首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the formation of radical A (2) and its precursor (tris(2-deoxy-2-L-ascorbyl)amine, 1) by the reaction of dehydroascorbic acid (DHA) with amino acid, ascorbic acid (AsA) and the reduced red pigment (3) were newly identified, in addition to scorbamic acid (SCA) and the red pigment (4), as intermediate products. The addition of AsA to the DHA-amino acid reaction, as well as to the DHA-SCA reaction, greatly increased the formation of 3 and 1. The reaction of AsA with 4 gave rapidly 3, followed by the gradual production of 1. From these results, a reaction pathway is proposed that 3 formed by the reduction of 4 with AsA is a key intermediate and its condensation with DHA followed by reduction with AsA might produce 2 and 1.  相似文献   

2.
The reaction force F(R) and the position-dependent reaction force constant κF(R) are defined by F(R)=-∂V(R)/∂R and κ(R)=∂2V(R)/∂R2, where V(R) is the potential energy of a reacting system along a coordinate R. The minima and maxima of F(R) provide a natural division of the process into several regions. Those in which F(R) is increasing are where the most dramatic changes in electronic properties take place, and where the system goes from activated reactants (at the force minimum) to activated products (at the force maximum). κ(R) is negative throughout such a region. We summarize evidence supporting the idea that a reaction should be viewed as going through a transition region rather than through a single point transition state. A similar conclusion has come out of transition state spectroscopy. We describe this region as a chemically-active, or electronically-intensive, stage of the reaction, while the ones that precede and follow it are structurally-intensive. Finally, we briefly address the time dependence of the reaction force and the reaction force constant.  相似文献   

3.
ABSTRACT

A new class of acyclic nucleoside phosphonates PMAMG, PMAMA, PMAMC, and PMAMT (compounds 1, 2, 3 and4) have been synthesized and tested in vitro against a wide variety of viruses, fungi and bacteria. PMAMG (1) was synthesized by the alkylation reaction of acetylguanine with the phosphonate side-chain, diisopropyl {[2-(bromomethyl)aziridin-1-yl]methyl}phosphonate (9), followed by deesterification reaction in the presence of TMSBr. In similar way, PMAMA, PMAMC, and PMAMT were prepared.  相似文献   

4.
The reaction of trioxane and tetraoxane endoperoxides with unsaturated phospholipid 1 in the presence of Fe(II) was investigated in the absence of oxygen by means of tandem ESI-MS analysis. The spectral analyses for the reaction mixtures showed that artemisinin 2 with a trioxane structure gave no peak except that for the remaining intact phospholipid 1 (m/z 758.9), indicating that there was no structural change to 1. On other hand, the reaction mixture of 1 with tetraoxanes 3 and 4 afforded a number of new peaks (m/z 620–850) that were presumably assigned to oxidative degradation products originating from phospholipid 1. Since this reaction was completely inhibited by the addition of a phenolic antioxidant, the process was considered to involve some free radical species. The newly discovered marked differences in reactivity between the trioxane and the tetraoxanes possibly reflects their different anti-malarial mechanisms, and this reactivity may contribute to the classification of a number of anti-malarial endoperoxides whose mode of action is based on phospholipid oxidation.  相似文献   

5.
In our searching program for novel sorbicillin related compounds, three novel compounds, spirosorbicillinols A (1), B (2), and C (3), were isolated from the fermentation broth of the USF-4860 strain isolated from a soil sample. The planar structures of compounds 13 were determined from spectroscopic evidence and degradation reaction, and that of 1 was the same as that of 2. The relative stereochemistries of compounds 13 were determined by 1H-1H coupling constants, the elucidation of HMBC and NOESY spectra in detail. 1 and 2 were stereoisomers at C8 position, each other. We propose that compounds 1 and 2 were formed by exo and endo intermolecular Diels-Alder reaction between sorbicillinol as a diene and scytolide (proposed precursor-1) as a dienophile, respectively. Similarly, we propose that compound 3 was formed by an endo intermolecular Diels-Alder reaction between sorbicillinol and proposed precursor-2.  相似文献   

6.
A series of pyranosyl homo-C-nucleosides have been synthesized by reaction of butenonyl C-glycosides (5a5j, and 8) and cyanoacetamide in presence of t-BuOK followed by further modifications. The reaction proceeds by Michael addition of cyanoacetamide to the butenonyl C-glycosides and subsequent dehydrative cyclization and oxidative aromatization to give glycosylmethyl pyridones (6a6j, 7a7j, 9, and 10). The glycosylmethyl pyridones (6a6e) on reaction with POCl3 under reflux gave respective glycosylmethyl pyridines (11a11e and 12a12e) in good yields. The synthesized compounds were screened for their in vitro α-glucosidase, glucose-6-phosphatase and glycogen phosphorylase inhibitory activities. One of the pyridylmethyl homo-C-nucleoside, compound 11d, displayed 52% inhibition of glucose-6-phosphatase as compared to the standard drug sodium orthovanadate while compound 12a showed a significant antihyperglycemic effect of 17.1% in the diabetic rats as compared to the standard drug metformin.  相似文献   

7.
A detailed doublet potential energy surface for the reaction of CH with CH3CCH is investigated at the B3LYP/6-311G(d,p) and G3B3 (single-point) levels. Various possible reaction pathways are probed. It is shown that the reaction is initiated by the addition of CH to the terminal C atom of CH3CCH, forming CH3CCHCH 1 (1a,1b). Starting from 1 (1a,1b), the most feasible pathway is the ring closure of 1a to CH3–cCCHCH 2 followed by dissociation to P 3 (CH3–cCCCH+H), or a 2,3 H shift in 1a to form CH3CHCCH 3 followed by C–H bond cleavage to form P 5 (CH2CHCCH+H), or a 1,2 H-shift in 1 (1a, 1b) to form CH3CCCH2 4 followed by C–H bond fission to form P 6 (CH2CCCH2+H). Much less competitively, 1 (1a,1b) can undergo 3,4 H shift to form CH2CHCHCH 5. Subsequently, 5 can undergo either C–H bond cleavage to form P 5 (CH2CHCCH+H) or C–C bond cleavage to generate P 7 (C2H2+C2H3). Our calculated results may represent the first mechanistic study of the CH + CH3CCH reaction, and may thus lead to a deeper understanding of the title reaction.  相似文献   

8.
The in vitro reactivities of astaxanthin toward peroxynitrite were investigated and the reaction products after scavenging with peroxynitrite were analyzed in order to determine the complete mechanism of this reaction. A series of carotenoids, 13-apo-astaxanthinone (1), 12′-apo-15′-nitroastaxanthinal (2), 12′-apo-astaxanthinal (3), 10′-apo-astaxanthinal (4), 9-cis-14′-s-cis-15′-nitroastaxanthin (5), 14′-s-cis-15′-nitroastaxanthin (6), 13-cis-14′-s-cis-15′-nitroastaxanthin (7), 10′-s-cis-11′-cis-11′-nitroastaxanthin (8), 13,15,13′-tri-cis-15′-nitroastaxanthin (9), 9-cis-astaxanthin (10), and 13-cis-astaxanthin (11), were isolated from the reaction products of carotenoids with peroxynitrite. Our previous studies achieved for the first time the isolation of nitro derivatives from the reaction of astaxanthin with peroxynitrite. Here we identify the major remaining reaction products of this reaction and investigate the stabilities of the nitro astaxanthins.  相似文献   

9.
The polymer PEDOT+ (1 or 2) mediates a cyclodehydration reaction with alditols 3, 5, 7, 9, in hydrocarbon solvents, to give cyclic ethers 4, 6, 8, or 10, respectively, in high yield with a trivial isolation protocol. Polymers 1 or 2 also mediate the cyclodehydration of ketohexoses such as d-fructose, but not aldohexoses, to the important industrial intermediate 5-hydroxymethylfurfural (17), under milder conditions when compared to reactions mediated by mineral acids. A cascade reaction with ketohexoses is observed in toluene via cyclodehydration followed by Friedel–Crafts alkylation of the initially formed benzylic alcohol to give 16.  相似文献   

10.
Reaction of ethyl 4-thioxo-3,4-dihydropyrimidine-5-carboxylate derivatives 1a,b and ethyl 4-oxo-3,4-dihydropyrimidine-5-carboxylate 1c with 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide in KOH or TEA afforded ethyl 2-aryl-4-(2′,3′,4′,6′-tetra-O-acetyl-β-D-glucopyranosylthio or/ oxy)-6-methylpyrimidine-5-carboxylate 6a-c. The glucosides 6a and 6b were obtained by the reaction of 1a and 1b with peracetylated glucose3 under MW irradiation. Mercuration of 1a followed by reaction with acetobromoglucose gave the same product 6a. The reaction of 1a-c with peracetylated ribose 4 under MW irradiation gave ethyl 2-aryl-4-(2′,3′,5′-tri-O-acetyl-β-D-ribofuranosylthio)-6-methylpyrimidine-5-carboxylate 8a–c. The deprotection of 6a–c and 8a–c in the presence of methanol and TEA/H2O afforded the deprotected products 7a–c and 9a–c. The structure were confirmed by using 1H and 13CNMR spectra. Selected members of these compounds were screened for antimicrobial activity.  相似文献   

11.
Abstract

Practical method to produce 2′,3′-dideoxypurinenucleosides from 9-(2,5-di-O-acetyl-3-bromo-3-deoxy-β-D-xylofuranosyl)purines (1) was developed. High ratio of 2′,3′-dideoxynucleoside to 3′-deoxyribonucleoside was obtained by selecting the reaction conditions (solvent, pH and/or base), or changing 2′-acyloxy leaving group. The reaction mechanism was studied by deuteration experiments of 1a and 1-(3,5-di-O-acety1-2-bromo-2-deoxy-β-D-ribofuranosyl)thymine (12).

  相似文献   

12.
A novel synthesis of the enone 12 starting from (+)-dihydrocarvone (3) and its transformation into (+)-7-hydroxycostal (1) are described. The ketone 10, obtained from 4 through a four-step sequence was converted to 12 by acid-catalyzed elimination and subsequent regioselective hydrogenation. Alternatively, the methoxyhydroperoxide 13 generated by the ozonolysis of 4 was subjected to the Criegee rearrangement, providing a mixture of 10 and 14, which on acid treatment, gave 11. Transformation of 12 into 19 was accomplished via a five-step reaction sequence. The reaction of 19 with the lithium alkoxide of 2-lithio-2-propenol afforded (+)-7-hydroxycostol (2), whose oxidation with manganese dioxide gave rise to (+)-7-hydroxycostal (1).  相似文献   

13.
14.
Variety of butyl [2-arylamino-4,4-dimethyl-6-oxo-cyclohex-1-ene]carbodithioates (3ac), 2-thioxo-6,7-dihydro-1H-benzo[d][1,3]thiazin-5(2H)-one derivatives (5ac), and the glucosyl carbodithioates 6ac as well as galactosyl carbodithioates 7ac have been synthesized from the reaction of enaminone derivatives 1ac with carbon disulfide followed by the alkylation with n-butyl bromide and α-d-glycosyl bromides, respectively. The amount of carbon disulfide plays a great role in the mode of reaction. The structures of the synthesized compounds were elucidated by spectral data and X-ray crystallography.  相似文献   

15.
The chalcone derivatives 3a,b were cyclized upon reaction with thiourea to give the pyrazolo[3,4-d]pyrimidine derivatives 5a,b. Condensation of 5a,b and their hydrazide derivatives 8a,b with cyclic and acyclic glucose gave the condensed S- and N-glycosides 7a,b and 9a,b, respectively. Reaction of 3b with ethyl cyanoacetate followed by reaction with cyclic glucose afforded a mixture of the O- and/or N-glycoside isomers 12 and 13, respectively. The pyrazolo[3,4-c]pyrazole derivative 14 was also obtained from the reaction of 3b with hydrazine hydrate. A number of the synthesized compounds were screened for their antitumor activity against three different tumor cell lines HEPG2 (liver), HCT116 (colon) and MCF-7 (breast) with a docking study against CDK2.  相似文献   

16.
6-Azafulleroid-6-deoxy-2,3-di-O-myristoylcellulose (3) was synthesized from 6-azido-6-deoxycellulose (1) by two reaction steps. The myristoylation of compound 1 with myristoyl chloride/pyridine proceeded smoothly to give 6-azido-6-deoxy-2,3-di-O-myristoylcellulose (2) in 97.0% yield. The reaction of compound 2 with fullerene (C60) was carried out by microwave heating to afford compound 3 in high yield. It was found from FT-IR, 13C NMR, UV–vis, differential pulse voltammetry (DPV), SEC analyses that compound 3 was the expected C60-containing polymer. Consequently, maximum degree of substitution of C60 (DSC60) of compound 3 was 0.33.  相似文献   

17.
A series of new 3′-O- and 5′-O-propargyl derivatives of 5-fluoro-2′-deoxyuridine (14) was synthesized by means of propargyl reaction of properly blocked nucleosides (2,4), followed by the deprotection reaction with ammonium fluoride. The synthesized propargylated 5-fluoro-2′-deoxyuridine analogues (14) were evaluated for their cytotoxic activity in three human cancer cell lines: cervical (HeLa), oral (KB) and breast (MCF-7), using the sulforhodamine B (SRB) assay. The highest activity and the best SI coefficient in all of the investigated cancer cells were displayed by 3′-O-propargyl-5-fluoro-2′-deoxyuridine (1), and its activity was higher than that of the parent nucleoside. The other new compounds exhibited moderate activity in all of the used cell lines.  相似文献   

18.
In our search for new natural photosynthetic inhibitors that could lead to the development of “green herbicides” less toxic to environment, the diterpene labdane-8α,15-diol (1) and its acetyl derivative (2) were isolated for the first time from Croton ciliatoglanduliferus Ort. They inhibited photophosphorylation, electron transport (basal, phosphorylating and uncoupled) and the partial reactions of both photosystems in spinach thylakoids. Compound 1 inhibits the photosystem II (PS II) partial reaction from water to Na+ Silicomolibdate (SiMo) and has no effect on partial reaction from diphenylcarbazide (DPC) to 2,6-dichlorophenol indophenol (DCPIP), therefore 1 inhibits at the water splitting enzyme and also inhibits PS I partial reaction from reduced phenylmetasulfate (PMS) to methylviologen (MV). Thus, it also inhibits in the span of P700 to Iron sulfur center X (FX). Compound 2 inhibits both, the PS II partial reactions from water to SiMo and from DPC to DCPIP; besides this, it inhibits the photosystem I (PS I) partial reaction from reduced PMS to MV. With these results, we concluded that the targets of the natural product 2 are located at the water splitting enzyme, and at P680 in PS II and at the span of P700 to FX in PS I. The results of compounds 1 and 2 on PS II were corroborated by chlorophyll a fluorescence.  相似文献   

19.
The synthesis and pharmacological evaluation of new 3-(imidazol-4(5)-ylmethylene)-2,3-dihydrobenzo[b]furan-2-ones 8-10 and 3-(3,5-dimethylpyrrol-2-ylmethylene)-2,3-dihydrobenzo[b]furan-2-one 11, analogues of SU-5416, as potential inhibitors of angiogenesis, are reported. Compounds 8 and 11 were prepared by a Knoevenagel reaction starting from 2-hydroxyphenylacetic acid 2 and 4-formylimidazole 5 or 2-formyl-3,5-dimethylpyrrole 7, followed by acid-catalysed cyclodehydration. For compounds 9 and 10, an alternative method was used; it consisted in carrying out the Knoevenagel reaction with the 2,3-dihydrobenzo[b]furan-2-ones 3 and 4. The antiangiogenic activity of these compounds was evaluated in the three-dimensional in vitro rat aortic rings test at 1 μM. At this concentration, compound 11 induced a decrease of angiogenesis comparable to that observed with SU-5416; the vascular density index at 1 μM of 11 and SU-5416 were 30±10 and 22±4% of control, respectively.  相似文献   

20.
Guaiacol is an important phenolic component present in pyrolytic bio-oils; and in this work its hydrodeoxygenation (HDO) by various reaction schemes has been considered within the framework of density functional theory. In this computational study, primarily three reaction schemes for the HDO of guaiacol are considered. In the first reaction scheme (RS 1), guaiacol undergoes hydrogenolysis at O–CH3 bond site of methoxy group to produce catechol and methane followed by HDO of catechol forming phenol and water, followed by HDO of phenol producing benzene and water and finally benzene leading to cyclohexane formation. In the second reaction scheme (RS 2), guaiacol undergoes hydrogenolysis at Caromatic–O bond of methoxy group producing phenol and methanol followed by hydrotreatment of phenol to form cyclohexane along with same intermediates as in the first reaction scheme. In the third reaction scheme (RS 3), HDO of guaiacol compound at Caromatic–OH sigma bond produces anisole and water; and then anisole follows two secondary pathways to produce cyclohexane. In this computational study, the transition state optimisations, vibrational frequency and IRC calculations are carried out by B3LYP functional with 6-311+g(d,p) basis set using Gaussian 09 and Gauss View 5 software package.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号