首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Possible involvement of queuine in oxidative metabolism   总被引:2,自引:0,他引:2  
The possibility that the base, queuine, or the queuine family of tRNAs may play a role in oxidative metabolism has been investigated. (i) The enzymatic insertion of queuine into tRNA requires oxygen. This is true for both the mammalian and bacterial enzyme. (ii) (q-) LM cells (murine fibroblast line) grown in culture had 53% less of the manganese-containing superoxide dismutase than (q+) cells. (iii) There was less thiobarbituric-acid-reactive material in queuine-deficient mouse liver and kidney than in (q+) liver and kidney.  相似文献   

2.
Queuine can replace guanine in the anticodon of certain tRNAs and is a hypermodified guanine derivative that can be synthesized by bacteria but not by mice. The study demonstrates that Drosophila can incorporate dietary queuine into tRNA but cannot synthesize it de novo for this purpose. Since an earlier study had shown that dietary CdCl2 caused Drosophila to increase greatly the proportion of queuine-containing tRNA over non-queuine tRNA the ability of dietary queuine to counteract cadmium toxicity was evaluated. When queuine was present in the cadmium-containing medium more pupae matured into adults than when queuine was absent. Other studies had demonstrated that the transglycosylase enzyme, that catalyzes the replacement of guanine in the anticodon of tRNA by queuine, is present in Drosophila larvae but the tRNA is virtually devoid of queuine. This study shows that in the presence of dietary queuine the larval tRNA contains abundant amounts of queuine. Therefore, we postulate a significant role for bacteria in supplying queuine to Drosophila for its incorporation into tRNA and that the control of this process by Drosophila is passive, i.e. is not an essential feature in differentiation.  相似文献   

3.
Higher eukaryotes contain tRNA transglycosylases that incorporate the guanine derivative queuine from the nutritional environment into specific tRNAs by exchange with guanine at position 34. Alterations in the queuosine content of specific tRNAs are suggested to be involved in regulatory mechanisms of major routes of metabolism during differentiation. Dictyostelium discoideum has been applied as a model to investigate the function of queuine or queuine-containing tRNAs. Axenic strains are supplied with queuine by peptone, but they grow equally well in a defined queuine-free medium. Queuine-lacking amoebae, starved in suspension culture for 24 h, lose their ability to differentiate into stalk cells and spores, whereas amoebae sufficiently supplied with queuine will overcome this metabolic stress and undergo further development when plated on agar. The results presented here show that D(-)-lactate occurs in the slime mould in millimolar amounts and that its level is remarkably decreased in queuine-lacking cells after 24 h of starvation in suspension culture. On isoelectric-focusing polyacrylamide gels, nine different forms of NAD-dependent D(-)-lactate dehydrogenase can be separated from extracts of vegetative cells, and six forms from extracts of the starved cells. Under queuine limitation, one form is missing in the starved cells. Low amounts of L(+)-lactate are usually found in vegetative amoebae but significantly less in queuine-lacking cells. Five forms of NAD-dependent L(+)-lactate dehydrogenase are detectable in extracts from vegetative, queuine-treated cells, and slight alterations occur in queuine-deficient amoebae. In the starved cells only one form of L(+)-lactate dehydrogenase is found, irrespective of the supply of queuine to the cells. A cytochrome of type b with an absorption maximum at 559 nm accumulates during starvation only in queuine-lacking cells; it might be a component of an NAD-independent lactic acid oxidoreductase as is cytochrome b 557 in yeast and be responsible for the reduced level of lactate in cells lacking queuine in tRNA.  相似文献   

4.
The degree of modification of guanine to queuine in the four queuine-containing tRNAs (Q-tRNAs) has been studied from rats of various age groups, and bacterial cells in different growth phases by measuring the amount of G-tRNA present in these tRNA preparations by tRNA-guanine transferase. In very young (one-week old) animals, only a small amount of G to Q modification was observed. However, this modification was essentially complete in the tRNAs of nine-month old animals, thereafter, the amount of Q decreased steadily. Studies of tRNAs from leukemic lymphocytes and bacterial cells indicated that the degree of G to Q modification was related to the metabolic state of the cell. The possible role of the Q-deficient isoacceptors in translation control is discussed.  相似文献   

5.
In eubacterial and eukaryotic tRNAs specific for Asn, Asp, His and Tyr the modified deazaguanosinederivative queuosine occurs in position 34, the first position of the anticodon. Analysis of unfractionated tRNAs from wheat and from tobacco leaves shows that these tRNAs contain high amounts of guanosine (G) in place of queuosine (Q). This was measured by the exchange of G34 for [3H]guanine catalysed by the specific tRNA guanine transglycosylase from E. coli. Upon gel electrophoretic separation of the labeled tRNAs, seven Q-deficient tRNA species including isoacceptors are detectable. Two are identified as cytoplasmic tRNAsTyr and tRNAAsp and two represent chloroplast tRNATyr isoacceptors. In contrast to leaf cytoplasm and chloroplasts, wheat germ has low amounts of tRNAs with G34 in place of Q.A new enzymatic assay is described for quantitation of free queuine in cells and tissues. Analysis of queuine in plant tissues shows that wheat germ contains about 200 ng queuine per g wet weight. In wheat and tobacco leaves queuine is present, if at all, in amounts lower than 10 ng/g wet weight. The absence of Q in tRNAs from plant leaves is therefore caused by a deficiency of queuine. Tobacco cells cultivated in a synthetic medium without added queuine do not contain Q in tRNA, indicating that these rapidly growing cells do not synthesize queuine de novo.  相似文献   

6.
Pig brain tRNA was assayed for the presence of queuosine in the first position of the anticodon for each of the Q-family of tRNAs (aspartyl, asparaginyl, histidyl and tyrosyl). The brain tRNA was aminoacylated with each of the four amino acids and the aminoacylated tRNA's analyzed by RPC-5 chromatography. The results of this study show that for all four tRNAs of the family, queuine is substituted for guanine in virtually 100% of the anticodons. Therefore, it can be concluded that queuine is able to cross the blood-brain barrier and that brain contains quanine-queuine tRNA transglycosylase, the enzyme responsible for the excision of guanine from the orginal transcipts of these tRNAs and insertion of queuine. The determination of whether the tRNA contained queuine was made from the elution profile of the RPC-5 chromatrograms and the results confirmed by a change in the RPC-5 elution profile when the tRNAs were reacted with BrCN or NaIO4.  相似文献   

7.
Queuine, a modified form of 7-deazaguanine present in certain transfer RNAs, is shown to occur in Drosophila melanogaster adults in a free form and its concentration varies as a function of age, nutrition and genotype. In several, but not all mutant strains, the concentrations of queuine and the Q(+) (queuine-containing) form of tRNATyr are correlated. The bioassay employs L-M cells which respond to the presence of queuine by an increase in their Q(+)tRNAAsp that is accompanied by a decrease in the Q(-)tRNAAsp isoacceptors. The increase in Q(+)tRNATyr in Drosophila that occurs on a yeast diet is accompanied by an increase in queuine. Similarly the increase of Q(+)tRNAs with age also is accompanied by an increase in free queuine. In two mutants, brown and sepia, these correlations were either diminished or failed to occur. Indeed, the extract of both mutants inhibited the response of the L-M cells to authentic queuine. When the pteridines that occur at abnormally high levels in sepia were used at 1 x 10(-6)M, the inhibition of the L-M cell assay occurred in the order biopterin greater than pterin greater than sepiapterin. These pteridines were also inhibitory for the purified guanine:tRNA transglycosylase from rabbit but the relative effectiveness then was pterin greater than biopterin greater than sepiapterin. Pterin was competitive with guanine in the enzyme reaction with Ki = 0.9 x 10(-7)M. Also when an extract of sepia was chromatographed on Sephadex G-50, the pteridine-containing fractions only were inhibitory toward the L-M cell assay or the enzyme assay. These results indicate that free queuine occurs in Drosophila but also that certain pteridines may interfere with the incorporation of queuine into RNA.  相似文献   

8.
Can a queuine-specific tRNA function normally without replacement of G by Q in its structure? To answer this, kinetics of aspartate queuine-containing tRNA (Q-tRNA) is compared with its queuine-deficient counterpart (G-tRNA). The results indicate that Asp Q-tRNA is a more effective substrate than the Asp G-tRNA. The Asp Q-tRNA exhibits a higher reaction velocity (Vmax greater than 30%) and a higher reaction rate (Km less than 55%) than its counterpart. The Asp tRNAs derived from human tumor lines and grown in athymic mice contain a full complement of queuine. This tumor tRNA exhibits aminoacylation kinetics similar to a normal liver tRNA. Reasons for observing the lack of a G-to-Q modification in cancer tRNAs by others are hypothesized. Two purified Asp isoacceptors from liver are compared for the aminoacylation reaction; small differences are noted in the Vmax, but none in the Km values.  相似文献   

9.
In its natural environment the protist Dictyostelium discoideum grows on bacteria and queuosine-containing tRNAs of the bacteria serve as source of the nutrient factor queuine. This deazaguanine derivative is inserted into tRNAAsp, tRNAAsn, tRNAHis and tRNATyr of the amoebae. The axenic strain AX-2 of D. discoideum grows equally well in a defined medium with or without exogenous queuine. When queuine is omitted, changes occur in lactate levels, lactate dehydrogenase patterns and cytochromes and the amoebae cannot differentiate after a metabolic stress. In this report we show that growing cells contain two-fold higher levels of tRNAAsp and tRNATyr when sufficiently supplied with queuine, than those lacking queuine. In tRNAAsp a new, as yet unidentified, derivative of queuine has been discovered. When RNA synthesis is totally inhibited by actinomycin, tRNAAsp and tRNATyr remain stable in queuine-containing, but not in queuine-lacking cells. In contrast, tRNAAsn and tRNAHis become partially degraded in both conditions. We suggest that free queuine can be obtained from endogeneous tRNA and that differential salvage of queuine by tRNAs of the Q-family plays a role in the regulation of genes encoding components of redox chains.  相似文献   

10.
Treatment of hypoxanthine-guanine phosphoribosyltransferase (HGPRT)-deficient human promyelocytic leukemia (HL-60) cells with 6-thioguanine results in growth inhibition and cell differentiation. 6-Thioguanine is a substrate for the tRNA modification enzyme tRNA-guanine ribosyltransferase, which normally catalyzes the exchange of queuine for guanine in position 1 of the anticodon of tRNAs for asparagine, aspartic acid, histidine, and tyrosine. During the early stages of HGPRT-deficient HL-60 cell differentiation induced by 6-thioguanine, there was a transient decrease in the queuine content of tRNA, and changes in the isoacceptor profiles of tRNA(His) indicate that 6-thioguanine was incorporated into the tRNA in place of queuine. Reversing this structural change in the tRNA anticodon by addition of excess exogenous queuine reversed the 6-thioguanine-induced growth inhibition and differentiation. Similar results were obtained when 8-azaguanine (another inhibitor of queuine modification of tRNA that can be incorporated into the anticodon) replaced 6-thioguanine as the inducing agent. The data suggest a primary role for the change in queuine modification of tRNA in mediating the differentiation of HGPRT-deficient HL-60 cells induced by guanine analogs.  相似文献   

11.
《Plant science》1986,47(2):83-89
Lupin and parsley cells cultured in vitro in defined media are not able to synthesize queuine-containing tRNATyr. Addition of free queuine to their culture media has brought about complete (80–100%) or high (45–58%) conversion of (Q−)-into (Q+)tRNATyr in lupin and parsley cultures, respectively.(Q+)tRNATyr does not occur in young leaves and stems of lupin albeit it does in its seeds. It may suggest, although indirectly, that (Q+)tRNATyr could play some function during embryo development, but probably not in other plant organs.We suggest that the formation of (Q+)tRNAs in higher plants depends on the delivery of queuine of bacterial origin from the environment.  相似文献   

12.
The eukaryotic tRNA:guanine transglycosylase (TGT) catalyses the base-for-base exchange of guanine for queuine (the q-base)--a nutrition factor for eukaryotes--at position 34 of the anticodon of tRNAsGUN (where 'N' represents one of the four canonical tRNA nucleosides), yielding the modified tRNA nucleoside queuosine (Q). This unique tRNA modification process was investigated in HeLa cells grown under either aerobic (21% O2) or hypoxic conditions (7% O2) after addition of chemically synthesized q-base to q-deficient cells. While the q-base was always inserted into tRNA under aerobic conditions, HeLa cells lost this ability under hypoxic conditions, however, only when serum factors became depleted from the culture medium. The inability to insert q into tRNA did not result from a lack of substrate, because the q-base accumulated within these cells against the concentration gradient, suggesting the presence of an active transport system for this base in HeLa cells. The activity of the TGT enzyme was restored after treatment of the cells with the protein kinase C activator, TPA, even in the presence of mRNA or protein synthesis inhibitors. The results indicate that the eukaryotic tRNA modifying enzyme, TGT, is a downstream target of activated protein kinase C.  相似文献   

13.
Partially purified extracts from Chlorella pyrenoidosa and Chlamydomonas reinhardtii catalyze the cleavage of queuosine (Q), a modified 7-deazaguanine nucleoside found exclusively in the first position of the anticodon of certain tRNAs, to queuine, the base of Q. This is the first report of an enzyme that specifically cleaves a 7-deazapurine riboside. Guanosine is not a substrate for this activity, nor is the epoxide a derivative of Q. We also establish that both algae can incorporate exogenously supplied queuine into their tRNA but lack Q-containing tRNA when cultivated in the absence of queuine, indicating that they are unable to synthesize Q de novo. Although no physiological function for Q has been identified in these algae, Q cleavage to queuine would enable algae to generate queuine from exogenous Q in the wild and also to salvage (and recycle) queuine from intracellular tRNA degraded during the normal turnover process. In mammalian cells, queuine salvage occurs by the specific cleavage of queuine from Q-5'-phosphate. The present data also support the hypothesis that plants, like animals, cannot synthesize Q de novo.  相似文献   

14.
15.
Dnmt2 enzymes are cytosine-5 methyltransferases that methylate C38 of several tRNAs. We report here that the activities of two Dnmt2 homologs, Pmt1 from Schizosaccharomyces pombe and DnmA from Dictyostelium discoideum, are strongly stimulated by prior queuosine (Q) modification of the substrate tRNA. In vivo tRNA methylation levels were stimulated by growth of cells in queuine-containing medium; in vitro Pmt1 activity was enhanced on Q-containing RNA; and queuine-stimulated in vivo methylation was abrogated by the absence of the enzyme that inserts queuine into tRNA, eukaryotic tRNA-guanine transglycosylase. Global analysis of tRNA methylation in S. pombe showed a striking selectivity of Pmt1 for tRNAAsp methylation, which distinguishes Pmt1 from other Dnmt2 homologs. The present analysis also revealed a novel Pmt1- and Q-independent tRNA methylation site in S. pombe, C34 of tRNAPro. Notably, queuine is a micronutrient that is scavenged by higher eukaryotes from the diet and gut microflora. This work therefore reveals an unanticipated route by which the environment can modulate tRNA modification in an organism.  相似文献   

16.
The incorporation of queuine into tRNA and its fate upon tRNA turnover has been studied in the Vero and L-M cell lines. An assay was developed using [3H]dihydroqueuine to detect the queuine acceptance and, thus, the queuine content of tRNA in intact cells. While L-M cells can use only queuine, Vero cells can use either queuine or its nucleoside, queuosine, to form queunine-containing tRNA. Since queuosine is not a substrate for the enzyme which incorporates queuine into tRNA, Vero cells must generate queuine from its nucleoside. When Vero cells are labelled with [3H]dihydroqueuine, the half life of acid insoluble radioactivity is 52 days in queuine-free medium and 3.1 days in queuine-containing medium, indicating that [3H]dihydroqueuine is salvaged from tRNA and reused by Vero cells, but that exogenous queuine can compete with the salvaged [3H]dihydroqueuine. When L-M cells are labelled with [3H]dihydroqueuine, the half life of the acid insoluble radioactivity is 1.2 days in the presence or absence of queuine, indicating the absence of queuine salvage in L-M cells.  相似文献   

17.
A guanine insertion enzyme (tRNA transglycosylase) was purified to a homogeneous state from Escherichia coli B by ammonium sulfate fractionation and DEAE-cellulose, DEAE-Sephadex A-50, phosphocellulose, and Sephadex G-200 column chromatographies. The molecular weight of the enzyme, which appeared to be a single polypeptide, was 4.6 X 10(4) by sodium dodecyl sulfate gel electrophoresis. The enzyme catalyzes exchange of guanine with guanine located in the first position of the anticodon of tRNATyr, tRNAHis, tRNAAsn, and tRNAAsp, but unlike the enzymes isolated from rabbit reticulocytes and Ehrlich ascites tumor cells it does not catalyze the exchange of guanine with queuine (7-(3,4-trans-4,5-cis-dihydroxy-1-cyclopenten-3-ylaminomethyl)-7-deazaguanine) present in these tRNAs. The pH optimum of the reaction was 7.0, and the pH1 value was 4.6 to 4.8. The reaction required Mg2+ ion. 7-Methylguanine inhibited guanine insertion, but the other purine analogues tested were not inhibitory and could not replace guanine.20  相似文献   

18.
19.
Protein phosphorylation or dephosphorylation is the most important regulatory switch of signal transduction contributing to control of cell proliferation. The reversibility of phosphorylation and dephosphorylation is due to the activities of kinases and phosphatase, which determine protein phosphorylation level of cell under different physiological and pathological conditions. Receptor tyrosine kinase (RTK) mediated cellular signaling is precisely coordinated and tightly controlled in normal cells which ensures regulated mitosis. Deregulation of RTK signaling resulting in aberrant activation in RTKs leads to malignant transformation. Queuine is one of the modified base of tRNA which participates in down regulation of tyrosine kinase activity. The guanine analogue queuine is a nutrient factor to eukaryotes and occurs as free base or modified nucleoside queuosine into the first anticodon position of specific tRNAs. The tRNAs are often queuine deficient in cancer and fast proliferating tissues. The present study is aimed to investigate queuine mediated inhibition in phosphorylation of tyrosine phosphorylated proteins in lymphoma bearing mouse. The result shows high level of cytosolic and membrane associated tyrosine phosphoprotein in DLAT cancerous mouse liver compared to normal. Queuine treatments down regulate the level of tyrosine phosphoproteins, which suggests that queuine is involved in regulation of mitotic signaling pathways.  相似文献   

20.
The modified base queuine is a nutrient factor for lower and higher eukaryotes except yeast. It is synthesized in eubacteria and inserted into the wobble position of specific tRNAs (tRNAGUN) in exchange of guanine at position 34. The tRNAs of Q family are completely modified in terminally differentiated somatic cells. However, mainly free queuine is present in embryonic and fast proliferating cells, tRNA remains Q deficient. Lactate dehydrogenase (LDH) A mRNA and LDH A protein is known to increase when cells are grown in hypoxic conditions. In the present study, the level of LDH isozymes is analyzed in different tissues of normal and cancerous (DLA) mice and the effect of queuine treatment on LDH isozyme is observed. LDH A isozyme is shown to increase in serum and liver of DLA mice. The level and activity of LDH A decreases on queuine treatment. In skeletal muscle and heart, LDH A isozyme decreases while LDH B increases in DLA mice. Queuine administration leads to change back towards normal. In case of brain, LDH A increases but LDH B decreases in DLA mice. Queuine treatment leads to decrease in A4 anaerobic isozymes of LDH. The results suggest that queuine suppresses anaerobic glycolytic pathway, which leads to tumor suppression of DLA mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号