首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Abstract

1-(2,3-Dideoxy-3-C-hydroxmethyl-β-D-threo-pentofuranosyl) -,1- (2,3-didehydro-2,3-dideoxy-3-C-hydroxymethyl-β-D-glycero- pentofuranosyl) -and 1-(3-C-azidomethyl-2,3-dideoxy-3-C-hydroxymethyl-β-D-glycero- pentofuranosyl)uracil, thymine and cytosine were synthesized and evaluated for anti-HIV activity. The synthetic strategy was based on an allylic alcohol transposition of the corresponding 3′-C-methylene-nucleoside analogues.  相似文献   

2.
Abstract

1-(2,3-Dideoxy-2-C-hydroxymethyl-β-D-threo-pentofuranosyl)-, 1-(2,3-didehydro-2,3-dideoxy-2-C-hydroxymethyl-β-D-glycero-pentofuranosyl)- and 1-(2-C-azidomethyl-2,3-didehydro-2,3-dideoxy-β-D-glycero-pentofuranosyl)uracuracil, thymine and cytosine were synthesized and evaluated for their anti-HIV activities. A key step of the synthesis involves a novel alcohol transposition of2-methylene-nucleoside analogues.  相似文献   

3.
Abstract

The facile synthesis of several substituted carbohydrates that are amenable for the preparation of 2′,3′-dideoxy-3′-hydroxymethyl nucleosides are reported. Elaboration of a previously reported analog, 5-O-benzoyl-3-deoxy-3-(benzyloxy)methyl-1,2-O-isopropylidene-β-D- ribofuranose (4) has provided two 2,3-dideoxy-3-branched ribose derivatives 5-O-benzoyl-2,3-dideoxy-3-(benzyloxy)methyl-1-O-methyl-β-D-ribofuranose (7) and 1.5-di-O-benzoyl-2,3-dideoxy-3-(benzyloxy)methyl-(α,β)-D-ribofuranose (10). Due to problems involved with the separation of anomeric mixtures when these carbohydrates were condensed with an heterocycle, another versatile synthon 5-O-benzoyl-3-deoxy-3-(benzyloxy)methyl-2-O-t-butyldimethylslyl-1-O- methyl-β-D-ribofuranose (12) was synthesized. The utility of this compound (12) is demonstrated in the total synthesis of 1-[3-deoxy-3-hydroxymethyl-β-D-ribofuranosyl]thymine (20).  相似文献   

4.
Abstract

The best approach for the synthesis of1-(3-azido-2,3-dideoxy-β-D-erythro-pento-furanosyl)lumazine (5) and its 6,7-dimethyl- (4) and 6,7-diphenyl derivatives (3) has been found in the interconversion of the corresponding 1-(2-deoxy- β-threo-pentofuranosyl)-lumazines. Monomethoxytritylation at the 5′-position (1 7, 3 4, 4 9) followed by mesylation at the 3′-OH group and subsequent nucleophilic displacement by lithium azide afforded 1 9, 2 9 and 4 7 which were deprotected by acid treatment to give 3–5 in good yields. The syntheses of 1-(2,3-dideoxy-β-D-glycero-pentofuranosyl)-6,7-diphenyllumazine (6) and its 6,7-dimethyl derivative (7) were achieved from 1-(2-deoxy-β-D-erythro-pentofuranosyl)-6,7-diphenyllumazine and the corresponding 6,7-dimethyllumazine (2 6) via their 5′-O-p-toluoyl- (2 0, 3 0), and 3′-deoxy-3′-iodo derivatives (2 4, 3 1) to form, after radical dehalogenation and final deprotection, 6 and 7. The newly synthesized lumazine nucleosides have been characterized by elemental analyses, UV-and NMR spectra.  相似文献   

5.
Abstract

The pharmacokinetics and toxicology of 2′,3′-dideoxy-β-L-5-fluorocytidine (β-L-FddC) and 2′,3′-dideoxy-β-L-cytidine (β-L-ddC) in mice was investigated. In addition, 2′,3′-dideoxy-β-L-5-azacytidine (β-L-5-aza-ddC) and its α-L-anomer (α-L-5-aza-ddC) were synthesized by coupling the silylated 5-azacytosine derivative with 1-O-acetyl-5-O-(tert-butyldimethylsilyl)-2,3-dideoxy-L-ribofuranose, followed by separation of the α-and β-anomers and were evaluated in vitro against HBV and HIV. β-L-5-aza-ddC was found to show significant anti-HBV activity at approximately the same level as 2′,3′-dideoxy-β-D-cytidine (ddC), which is a known anti-HBV agent. β-L-5-aza-ddC was not cytotoxic to L1210, P388, S-180, and CCRF-CEM cells up to a concentration of 100 μ. Conversely, the α-L-anomer was not active against HBV at the same concentration.  相似文献   

6.
The linker-equipped disaccharide, 8-amino-3,6-dioxaoctyl 2,6-dideoxy-2-acetamido-3-O-β-d-galactopyranosyluronate-β-d-glucopyranoside (10), was synthesized in eight steps from acetobromogalactose and ethyl 4,6-O-benzylidene-2-deoxy-2-trichloroacetamido-1-thio-β-d-glucopyranoside. The hydroxyl group present at C-4II in the last intermediate, 8-azido-3,6-dioxaoctyl 4-O-benzyl-6-bromo-2,6-dideoxy-2-trichloroacetamido-3-O-(benzyl 2,3-di-O-benzyl-β-d-galactopyranosyluronate)-β-d-glucopyranoside (9), is positioned to allow further build-up of the molecule and, eventually, construction of the complete hexasaccharide. Global deprotection (910) was done in one step by catalytic hydrogenolysis over palladium-on-charcoal.  相似文献   

7.
Nitrous acid deamination of 2-amino-1,6-anhydro-2-deoxy-β-D-glucopyranose (1) in the presence of weakly acidic, cation-exchange resin gave 1,6:2,3-dianhydro-β-D-mannopyranose (3) and 2,6-anhydro-D-mannose (6), characterized, respectively, as the 4-acetate of 3 and the per-O-acetylated reduction product of 6, namely 2,3,4,6- tetra-O-acetyl-1,5-anhydro-D-mannitol, obtained in the ratio of 7:13. Comparative deaminatior of the 4-O-benzyl derivative of 1 led to similar qualitative results. Deamination of 3-amino-1,6-anhydro-3-deoxy-β-D-glucopyranose gave 1,6:2,3- and 1,6:3,4-dianhydro-β-D-allopyranose (13 and 16), characterized as the corresponding acetates, obtained in the ratio of 31:69, as well as the corresponding p-toluenesulfonates. Deamination of 4-amino-1,6-anhydro-4-deoxy-β-D-glucopyranose and of its 2-O-benzyl derivative gave the corresponding 1,6:3,4-D-galacto dianhydrides as the only detectable products. 2,5-Anhydro-D-glucose, characterized as the 1,3,4,6-tetra-O- acetyl derivative of the corresponding anhydropolyol, was obtained in 39% yield from the same deamination reaction performed on 2-amino-1,6-anhydro-2-deoxy-β-D- mannopyranose (24). In 90% acetic acid, the nitrous acid deamination of 24, followed by per-O-acetylation, gave only 1,3-4-tri-O-acetyl-2,5-anhydro-α-D-glucoseptanose. In the case of 1,6-anhydro-3,4-dideoxy-3,4-epimino-β-D-altropyranose, only the corresponding glycosene was formed, namely, 1,6-anhydro-3,4-dideoxy-β-D-threo--hex-3-enopyranose.  相似文献   

8.

A key compound, 2-amino-6-chloro-9-(2,3-dideoxy-3-fluoro-β-D-erythro-pentofuranosyl)purine, was prepared from 2-amino-6-chloropurine riboside in 5 steps, then subjected to the nucleophilic displacement with benzenethiols to afford 6-arylthio congeners. These compounds showed a similar anti-HBV effect to that of 2′,3′-dideoxy-3′-fluoroguanosine.  相似文献   

9.
Abstract

Deamination of 1-(3-amino-3-deoxy-β-D-glucopyranosyl)-uracil gave a ring contracted nucleoside, 3′-deoxy-3′-formyluridine as a hemiacetal form, and uracil. Similar treatment of the 2′-deoxyderivative, 1-(3-amino-2,3-dideoxy-β-D-glucopyranosyl)uracil, gave the corresponding 2′,3′-dideoxy-3′-formyluridine in high yield. The 3′-epimerization of the 3′-formyluridine derivative was achieved and after reduction of the formyl groups, 2′,3′-dideoxy-3′(R and S)-hydroxymethyluridine were obtained.  相似文献   

10.
Methyl 3-azido-2-O-benzoyl-3,4-dideoxy-β-dl-erythro-pentopyranoside (6) was synthesized through two routes in five steps from methyl 2,3-anhydro-4-deoxy-β-dl-erythro-pentopyranoside (1). The first route proceeded via selective azide displacement of the 3-tosyloxy group of methyl 4-deoxy-2,3-di-O-tosyl-α-dl-threo-pentopyranoside, followed by detosylation and benzoylation. The second route consisted, with a better overall yield, in the azide displacement of the mesyloxy group of methyl O-benzoyl-4-deoxy-3-O-methylsulfonyl-α-dl-threo-pentopyranoside (10), obtained by benzylate opening of 1, followed by benzoylation, debenzylation, and mesylation. Compound 6 was transformed into its glycosyl chloride, further treated by 6-chloropurine to give the nucleoside 9-(3-azido-2-O-benzoyl-3,4-dideoxy-β-dl-erythro-pentopyranosyl)-6-chloropurine (13). When treated with propanolic ammonia, 13 yielded 9-(3-azido-3,4-dideoxy-β-dl-erythro-pentopyranosyl)adenine.  相似文献   

11.
Abstract

During the course of preparation of 3′-azido-3′-deoxythymidine (AZT), we observed consistent formation of an isomer of AZT (2-4%) which was isolated and the structure established as 3-(3-azido-2,3-dideoxy-β-D-ezythro pentofuranosyl)thymine. In a more detailed study, this rearrangement was found to occur during the treatment of 2,3′-anhydro-5′-O-tritylthymidine (1) with LiN3 in aqueous DMF.  相似文献   

12.
9-(2-Azido-2,3-dideoxy-β-D-threo-pentofuranosyl)adenine derivatives (1a–e) containing a lipophilic function at the N-6 position in the purine ring were prepared and evaluated for their antiviral activity. The compounds 1a–e turned out to be inactive as antiviral agents.  相似文献   

13.
Abstract

A series of 5′-N-methanesulfonyl derivatives of 3′-azido-5′-(alkylamino)-3′,5′-dideoxythymidine was synthesised. The first step of the synthesis involved the reaction of 1-(2,5-dideoxy-5-O-tosyl-β-D-threo-pentofuranosyl)thymine 1 with an appropriate amine to give 1-[5-(alkylamino)-2,5-dideoxy-β-D-threo-pentofuranosyl]thymines 2a-e and 1-(2,5-dideoxy-β-threo-pent-4-enofuranosyl)thymine 3 as a by-product. Compounds 2a-e were treated with an excess of methanesulfonyl chloride to yield intermediates 1-[5-(dimethylamino)-3-O-methanesulfonyl-2,3,5-trideoxy-β-D-threo-pentofuranosyl]-thymine 4a and 1-[5-(N-alkyl-N-methanesulfonyl)-3-O-methanesulfonyl-2,3,5-trideoxy-β-D-threo-penfuranosyl]thymines 4b-e. The reaction of 4a-e with lithium azide in dimethyl-formamide afforded the final compounds 1-[3-azido-5-(N-methyl-N-methanesulfonyl)-2,3,5-trideoxy-β-D-erythro-penofuranosyl]thymine 5a and 1-[3-azido-5-(N-alkyl-N-methanesulfonyl)-2,3,5-trideoxy-β-D-erythro-penofuranosyl]thymines 5b-e. The independent synthesis of 4′,5′-unsaturated product 3 was also described.  相似文献   

14.
Abstract

Two industrial synthetic approaches to Lodenosine (1, FddA, 9-(2,3-dideoxy- 2-fluoro-β-D-threo-pentofuranosyl) adenine) via a purine riboside or a purine 3′-deoxyriboside are described. Several novel applications of deoxygenation and fluorination methods are compared considering reaction yields, economy, safety and environmental concerns.  相似文献   

15.
Abstract

- The 4-amino-1-(2.3-dideoxy-β-D-glycero-pent-2-enofurano-syl)-1H-irnidazo[4,5-c]pyridine (1) and 4-amino-1-(2,3-dideoxy-β-D-gfycero-pentofuranosyl)-1H-imidazo[4,5-c]pyridine (2), 3-deaza analogues of the anti-HIV agents 2′.3′-didehydro-2′,3′-dideoxyadenosine (d4A) and 2′,3′-dideoxy-adenosine (ddA), have been synthesized. The reaction of 3-deazaadenosine (3) with 2-acetoxyisobutyryl bromide yielded a mixture of cis and trans 2′,3′-ha-lo acetates which was convertcd into olefinic nucleoside (1) on treatment with a Zn/Cu couplc and then with methanolic ammonia. The 2′,3′-dideoxy-3-deazaadenosine (2) was obtained by catalytic reduction of 1. A number of phosphate triester derivatives of 2 have also been prepared. The diethyl-, dipropyl- and dibutylpliospliates 7a-c and 3-deazaadenosine have shown anti-HIV activity at non-cytotoxic doses. Compounds 7a-c have also shown significant cytostatic activity against murine colon adenocarcinoma cells.  相似文献   

16.
Abstract

Nucleoside analogues analogues1-(2′,3′-dideoxy-2′-C-hydroxymethyl-β-D-erythro-pentofuranos-yl)thymine (1), 2′,3′-dideoxy-2′-C-hydroxymethylcytidine (2), 2′,3′-dideoxy-2′-C-hydroxymethyladenosine (3), 1-(2′-C-azidomethyl-2′,3′-dideoxy-β-D-erythro-pento-furanosyl)thymine (4), 2′-C-azidomethyl-2′,3′-dideoxycytidine (5), and 2′3′-dideoxy-2′-C-methylcytidine (6) have been synthesized from (S)-4-hydroxymethyl-y-butyro-lactone (7)  相似文献   

17.
Abstract

Synthesis of 9-(2,3-dideoxy-3-fluoro-β-D-ribofuranosyl)-2-chloroadenine (7b) and -2-chloro-6-methoxypurine (9b), as well as the α-D-anomer 7a of the former and its N isomer 10a is reported. Among the compounds synthesized, only the β-D-anomer 7b displays moderate cytotoxic activity.  相似文献   

18.
Treatment of methyl β-d-ribofuranoside with acetone gave methyl 2,3-O-isopropylidene-β-d-ribofuranoside (1, 90%), whereas methyl α-d-ribofuranoside gave a mixture (30%) of 1 and methyl 2,3-O-isopropylidene-α-d-ribofuranoside (1a). On oxidation, 1 gave methyl 2,3-O-isopropylidene-β-d-ribo-pentodialdo-1,4-furanoside (2), whereas no similar product was obtained on oxidation of 1a. Ethynylmagnesium bromide reacted with 2 in dry tetrahydrofuran to give a 1:1 mixture (95%) of methyl 6,7-dideoxy-2,3-O-isopropylidene-β-d-allo- (3) and -α-l-talo-hept-6-ynofuranoside (4). Ozonolysis of 3 and 4 in dichloromethane gave the corresponding d-allo- and l-talo-uronic acids, characterized as their methyl esters (5 and 6) and 5-O-formyl methyl esters (5a and 6a). Ozonolysis in methanol gave a mixture of the free uronic acid and the methyl ester, and only a small proportion of the 5-O-formyl methyl ester. Malonic acid reacted with 2 to give methyl 5,6-dideoxy-2,3-O-isopropylidene-β-d-ribo-trans-hept-5-enofuranosiduronic acid (7).  相似文献   

19.
Abstract

The first synthesis of nitro-multideoxy-sugar containing nucleosides was achieved. 1-(4,6-O-Benzylidene-3-deoxy-3-nitro-β-D-glucopyranosyl)uracil (3) was converted in 75% yield into 1-(4,6-O-benzylidene-2,3-dideoxy-3-nitro-arabinohexopyranosyl)uracil (7) by acetylation followed by NaBH4 reduction in methanol. De-O-benzylidenation with CF3CO2H afforded crystalline 1-(2,3-dideoxy-3-nitro-β-D-arabinohexopyranosyl)uracil (S) was obtained in 87% yield. Raney Ni reduction of 8 afforded the corresponding 3′-amino-nucleoside 9. Acetylation of 8 followed by NaBH4 treatment afforded an 8:1 mixture from which 1-(2,3,4-trideoxy-3-nitro-β-D-threohexopyranosyl)-uracil (14) was obtained in pure crystalline form. After Raney Ni reduction of the mixture, 1-(3-amino-2,3,4-trideoxy-β-d-threo-hexopyranosyl)uracil (16) and its erythro epimer 21 were isolated. 1-(4,6-O-Benzylidene-2,3-dideoxy-3-nitro-β-d-lyxohexopyranosyl)uracil (24) was prepared in 72% yield from 1-(4,6-O-benzylidene-3-deoxy-3-nitro-β-d-galactopyranosyl)uracil (4) by acetylation and subsequent reduction with NaBH4. De-O-benzylid-enation of 23 afforded 1-(2,3,4-trideoxy-3-nitro-β-d-lyxohexopyranosyl)uracil (25) in 83% yield. Schmidt-Rutz reaction of 25 followed by NaBH4 reduction afforded a mixture of threo and elythro isomers of 2′,3′,4′-trideoxy-3′-nitro-hexopyranosyluracil, from which pure 16 and 21 were obtained.

  相似文献   

20.
Amylose (1) was tritylated at O-6, the ether p-toluenesulfonylated at O-2 and O-3, and the product (3) treated with sodium iodide and zinc dust in N,N-dimethyl-formamide, to give 2,3-dideoxy-6-O-trityl-α-D-erythro-hex-2-enopyranoglycan (4). This 2,3-unsaturated polysaccharide could be converted into a 2,3-dibromo derivative (5), and hydrogenated with concomitant detritylation to the saturated analogue (6), and, on treatment with aqueous acetic acid, it gave 2-(D-glycero-1,2-dihydroxyethyl)-furan (8). The 2,3-bis(p-toluenesulfonate) (10) of β-D-xylan (9) was similarly converted into the 2,3-unsaturated polysaccharide, 2,3-dideoxy-β-D-glycero-pent-2-enopyranoglycan (11), which, with aqueous acetic acid, gave 2-(hydroxymethyl)furan (12a).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号