首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Abstract

5-O-tert-Butyldimethylsilyl-1,2-O-isopropylidene-3(R)-(nicotinamid-2-ylmethyl)-α-D-ribofuranose (11a) and ?3(R)-(nicotinamid-6-ylmethyl)-α-D-ribofuranose (11b) were prepared by condensation of 5-O-tert-butyldimethylsilyl-1,2-O-isopropylidene-α-D-erythro-3-pentulofuranose (10) with lithiated (LDA) 2-methylnicotinamide and 6-methylnicotinamide, respectively, and then deprotected to give 1,2-O-isopropylidene-3-(R)-(nicotinamid-2-ylmethyl)-α-D-ribofuranose(12a) and 1,2-O-isopropylidene-3(R)-(nicotinamid-6-ylmethyl)-α-D-ribofuranose (12b). Benzoylation as well as phosphorylation of compounds 12 afforded the corresponding 5-O-benzoate (13b) and 5-O-monophosphates (14a and 14b). Treatment of 13b with CF3COOH/H2O caused 1,2-de-O-isopropylidenation with simultaneous cyclization to the corresponding methylene-bridged cyclic nucleoside - 3′,6-methylene-1-(5-O-benzoyl-β-D-ribofuranose)-3-carboxamidopyridinium trifluoro-acetate (8b) - restricted to the “anti” conformation. In a similar manner compounds 14a and 14b were converted into conformationally restricted 2,3′-methylene-1-(β-D-ribofuranose)-3-carboxamidopyridinium-5′-monophosphate (9a - “syn”) and 3′,6-methylene-1-(β-D-ribofuranose)-3-carboxamido -pyridinium-5′monophosphate (9b - “anti”) respectively. Coupling of derivatives 12a and 12b with the adenosine 5′-methylenediphosphonate (16) afforded the corresponding dinucleotides 17. Upon acidic 1,2-de-O-isopropylidenation of 17b, the conformationally restricted P1-[6,3′-methylene-1-(β-D-ribofuranos-5-yl)-3-carboxamidopyridinium]-P2-(adenosin-5′-yl)methylenediphosphonate 18b -“anti” was formed. Compound 18b was found to be unstable. Upon addition of water 18b was converted into the anomeric mixture of acyclic dinucleotides, i. e. P1-[3(R)-nicotinamid-6-ylmethyl-D-ribofuranos-5-yl]-P2-(adenosin-5′-yl)-methylenediphosphonate (19b). In a similar manner, treatment of 17a with CF3COOH/H2O and HPLC purification afforded the corresponding dinucleotide 19a.

  相似文献   

2.
Abstract

Efficient syntheses of 2′-bromo-2′-deoxy-3′,5′-O-TPDS-uridine (5a) and 1-(2-bromo-3,5-O-TPDS-β-D-ribofuranosyl)thymine (5b) from uridine and 1-(β-D-ribofuranosyl)thymine are described, respectively. The key step is a treatment of 3′,5′-O-TPDS-O2,2′-anhydro-1-(β-D-ardbinofuranosyl)uracil (4a) and -thymine (4b) with LiBr in the presence of BF3-OEt2 in 1,4-dioxane at 60°C to give 5a and 5b in 98%, and 96% yield, respectively.

  相似文献   

3.
Abstract

A group of 5′-O-myristoyl analogue derivatives of FLT (2) were evaluated as potential anti-HIV agents that were designed to serve as prodrugs to FLT. 3′-Fluoro-2′,3′-dideoxy-5′-O-(12-methoxydodecanoyl)thymidine (4) (EC50 = 3.8 nM) and 3′-fluoro-2′,3′-dideoxy-5′-O-(12-azidododecanoyl)thymidine (8) (EC50 = 2.8 nM) were the most effective anti-HIV-1 agents. There was a linear correlation between Log P and HPLC Log retention time for the 5 ′-O-FLT esters. The in vitro enzymatic hydrolysis half-life (t½), among the group of esters (3–8) in porcine liver esterase, rat plasma and rat brain homogenate was longer for 3′-fluoro-2′,3′-dideoxy-5 ′-O-(myristoyl)thymidine (7), with t½ values of 20.3, 4.6 and 17.5 min, respectively.  相似文献   

4.
Abstract

Three isomers of 9-(4,6-O-benzylidene-3-deoxy-β-D-hexopyranosyl) adenines (2–4) were isolated. The manno isomer 2 could be isomerized to the gluco isomer 3. The manno (2) and galacto isomer (4) were deprotected to 5 and 7, respectively. Michael addition of some organic amines and thiolates to the nitroolefin intermediate (8) gave the corresponding 2-(substituted)-3-nitro-glucopyranosides (9a-h). Compounds 9a,c,h were deprotected to 10a,c,h. Sodium azide with 8 gave the triazolo nucleoside 11, which was deprotected to 12. 2-Deoxy-3-nitro analogue 14 was also obtained.

  相似文献   

5.
Abstract

After 2′,5′-di-O-protection of 8-bromoadenosine, the product was converted to the xyloside, which was successively treated with diethylaminosulfur trifluoride (DAST) and acid to afford 8-bromo-3′-deoxy-3′-fluoroadenosine. 8-Mercapto and 8-oxy analogs were obtained from 8-bromo congener.  相似文献   

6.
Abstract

Reaction of 2′,3′,5′-O-silylated inosine derivative 1 with 2, 3-O-isopropylidene-5-O-tritylribosyl chloride (3) in a two-phase (CH2Cl2-aq. NaOH) system in the presence of Bu4NBr gave three products, i. e., 6-O-α-, 6-O-β-, and N 1-β-isomers of glycosides 4, 5a, and 5b. A similar PTC reaction of 1 with 2, 3, 5-tri-O-benzylribosyl bromide (9) gave four regio- and stereo-isomers involving the N1-β-glycoside 10. Reaction of 1 with 2, 3, 5-tri-O-benzoylribosyl bromide (11) afforded three products involving the desired N1-β-glycoside 12b, which could be deprotected to give N 1-ribosylinosine (15b) as a useful intermediate for the synthesis of cIDPR.

  相似文献   

7.
Abstract

Minor nucleosides found in several eukaryotic initiator tRNAsi Met, O-β-D-ribofuranosyl(1″→2′)adenosine and -guanosine (Ar and Gr), as well as their pyrimidine analogues, were obtained from N-protected 3′,5′-O-(1,1,3,3-tetraisopropyldisiloxane-1,3-diyl)ribonucleosides and 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose in the presence of tin tetrachloride in 1,2-dichloroethane. A crystal structure has been solved for 2′-O-ribosyluridine. The 3′-phosphoramidites of protected 2′-O-ribosylribonucleosides were prepared as the reagents for 2′-O-ribofuranosyloligonucleotides synthesis. O-β-D-Ribofuranosyl(1″→2′)adenylyl(3′→5′)guanosine (ArpG) was obtained and its structure was analysed by NMR spectroscopy.

  相似文献   

8.
An attempt was made to isolate the hypotensive substances from a hot water extract of kinkan. Eight flavonoid glycosides were isolated by repeated chromatography and by gel filtration after extracting with n-butanol and treating with lead subacetate. Their structures were established to be 6,8-di-C-glucosylapigenin (1), 3,6-di-C-glucosylacacetin (2), 2″-O-α-l-rhamnosyl-4′-O-methyl-vitexin (3), 2″-O-α-l-rhamnosyl-4′-O-methylisovitexin (4), 2″-O-α-l-rhamnosylvitexin (5), 2″-O-α-l-rhamnosylorientin (6), 2″-O-α-l-rhamnosyl-4′-O-methylorientin (7) and ponicilin (8) by UV. MS, 1-NMR and 13C-NMR spectroscopy, and by sugar analysis. Each component was intravenously injected in SHR-SP (0.5 ~ 1.0 mg/100 g of body weight), 1, 2, 5 and 6 were found to lower the rat blood pressure.

Among these compounds, 2, 3, 4, 6 and 7 were new flavone glycosides.  相似文献   

9.
Abstract

The 3′, 5′-di-O-acetyl-, 3′-, 5′-di-O-balzyl-, 3′-O-acety -5-O-trityl- and 3′-, 5′ -di-O-trityl-2′-O-triflyl-1-benzylhnosine (8c, 15, 20C, and 27, respectively) were prepared and subjected to nucleophilic reaction with TASF. Thus, 3′, 5′-O-(1, 1, 3, 3-tetraisopropyldisiloxanyl)-1-benzylinosine (5c) was triflylated, desilylated, and then acetylated to give 8c. Also, 5c was converted into the 2′-O-tetrahydropyrnyl (W) derivative 11 which was desilylated and then benzylated to give 2′-O-tetrahydropyranyl-O3′, O5′, N1-tribenzylinosine (13). Removal of the THP group from 13 followed by triflylation afforded 2′-O-triflyld-O3′,O5′ N1-tribenzylinosine (15). 3′-O-Acetyl-2′ -O-triflyl-,O5′,N1-inosine (20) was prepared frmn 5′ -O-trityl-1-benzylhh (18c) by conversion into the 2′-, 3′-O-(di-n-butylstannylene) derivative which was treated with triflyl chloride and then acetylated. Treatment of 1-benzyl-inosine (4c) with trityl chloride in pyridine containing p-dimethylamino-pyridine afforded a mixture of 2′-, 5′- and 3′-, 5′-di-O-trityl-l-benzylinosine (25 and 26, respectively). These regioiscums were chrcanato-graphically separated. Triflylation of 26 gave 2′-o-triflyl-3′-, 5′-di-O-trityl-1-benzylhoshe (27).

The triflates 8c and 15 only afforded elhination products upon treatment with TASF. However, the trif late group in 20c and 27 was displaced by fluoride with fornation of the 2′-fluoro-arabino nucleosides, 21c and 28, in 10 and 30% yield, respectively. After deprotection of 28, 9-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)hypowntkine (1, F-ara-H) was obtained in good yield. The conformational influence of the sugar protecting groups on the rate of nucleophilic substitution against elimination is discussed.  相似文献   

10.
Abstract

2′-Deoxy-5′-0-(4,4′-dimethoxytrityl)-5-methyl-N 4-(1-pyrenylmethyl)-α-cytidine (5) was prepared by reaction of 1-pyrenylmethylamine with an appropriate protected 4-(l,2,4-triazolyl)-α-thymidine derivative 3 which was synthesized from 5-O-DMT protected α-thymidine 1. Aminolysis of 3 afforded 3′-O-acetyl-2′-deoxy-5′-O-(4,4′-dimethoxytrityl)-5-methyl-α-cytidine (8). Benzoylation of 8 and removal of acetyl afforded N 4-benzoyl-2-deoxy-5–0-(4,4′-dimethoxytrityl)-5-methyl-α-cytidine (10). The amidites of compounds 5and 10 were prepared and used in α-oligonucleotide synthesis. DNA three-way junction (TWJ) is stabilized when an α-ODN is used for targeting the dangling flanks of the stem in a DNA hairpin. Further stabilization of the TWJ is observed when 5 is inserted into the α-ODN at the junction region.

  相似文献   

11.
Abstract

5′-Chloro-5′-deoxy-N,3′-O-dibenzoylthymidine (3a), 5′-chloro-5′-deoxy-N4, 3′-O-dibenzoyldeoxycytidine(3b), 5′-chloro-5′-deoxy-N6,3′-O-dibenzoyldeoxyadenosine(3c), N-benzoyl-1-(3-chloro-2,3-dideoxy-5-O-trityl-ß-D-xylofuranosyl)thymine (5a) and N6-benzoyl-9-(3-chloro-2,3-dideoxy-5-O-trityl-ß-D-xylofuranosyl)adenine (5b) have been synthesized in very high yields using a new efficient reagent, tris(2,4,6-tribrom-ophenoxy)dichlorophosphorane (BDCP). The reaction time was greatly reduced to 5–8 min. NOE data suggested an inversion of configuration at C3-position and thus an SN2 mechanism has been proposed for the chlorination reaction.

  相似文献   

12.
Abstract

Starting from 2′,5′-di-O-TBDMS-3′-ketouridine 1 or its thymine analogue 2, both xylo (3–10) and ribo (20) epimers of a series of 3″-substituted 3′-spironucleosides have been obtained in good yields and with a total stereoselectivity. Most new compounds were moderately cytotoxic with in some cases slightly selective antiproliferative activities. None of these compounds was active against HIV, but some other antiviral activities against HSV-2, CMV, EBV, or VZV, in the micromolar range, were noted in specific cases.  相似文献   

13.
Abstract

3′-Amino-3′-deoxy-5′-O-(4,4′-dimethoxytrityl)-3′-N,5′(R)-C-ethylenethymidine (6) was synthesized starting from 3′-azido-3′-deoxythymidine. Condensation of 6 with 5′-O-(H-phosphonyl)thymidine and 5′-O-(p-nitrophenoxycarbonyl)thymidine derivatives gave dinucleotide and dinucleoside derivatives, respectively, which were incorporated into oligodeoxynucleotides (ODNs). Tm data of the modified ODNs are also presented.  相似文献   

14.
Abstract

The 5-oxo-6-methylene-pyrimidine-2,4-dione intermediate (6) that is formed when 5-acetoxy-6-acetoxymethyl-1-β-D-(5-O-acetyl-2,3-O-isopropylidene)-ribofuranosyluracil (5) is treated with sodium hydroxide undergoes cyclization at pH 14 to give 2′,3′-O-isopropylidene-5-hydroxy- O 5, 6-methanouridine (8) in good yield. Conversion of 8 into the 5-triflate ester 14 followed by reduction with [(Ph)3P]4Pd/Bu3SnH and deblocking with acetic acid then affords O 5′, 6-methanouridine (4) Conformational studies (NOE difference spectra, vicinal 1H-13C coupling constants, NOESY and CD spectra, molecular modeling) indicate that the C7-methylene group of 4 projects towards the furanose ring oxygen atom, producing a glycosyl rotation angle of about ? 160°.  相似文献   

15.
Abstract

Two representative S-cyclonucleosides, 8,5′-anhydro-2′, 3′-O-isopropylidene-8-mercaptoadenosine (3) and 8,2′-anhydro-3′,5′-O-(tetraisopropyldisiloxane-1,3-diyl)-8-mercaptoguanosine (8), were prepared in good yields by dropwise addition of one equivalent each of triphenylphosphine and DEAD in DMF into a mixture of 2′,3′-O-isopropylidene-8-mercaptoadenosine (2) or 3′,5′-O-(tetra-iso-propyldisiloxane-1,3-diyl)-8-mercaptoguanosine (7), respectively, in DMF. Treatment of compound 2 with two equivalents each of triphenylphosphine and DEAD in DMF afforded N-[8,5′-anhydro-2′,3′-O-isopropylidene-8-mercaptopurin-6-yl]triphenylphospha-λ5-azene (4) in 87% yield.  相似文献   

16.
Abstract

In expectation of discovering their antiviral activity, acyclic adenosine derivatives 7, 11, 12, and 16 were designed as analogs of neplanocin A (NPA) and L-eritadenine which are strong inhibitors of S-adenosyl-L-homocysteine hydrolase. The 1′,5′-seco-analog of 4′-deoxymethyl-NPA (DHCA) 7 was synthesized by dideoxygenation of 9-(2,3-O-isopropylidene-D-ribityl)adenine (2). Acyclic DHCA analogs 11 and 16 were obtained by Wittig reaction of the aldehyde 3 with Ph3P=CHCO2Et and Ph3P=CHCN, respectively. Hydrolysis of the ester 11 afforded a vinylog of L-eritadenine 12. The synthesized acyclic nucleosides 7, 10, and 11 were evaluated for antiviral activity, however, none of them showed any significant antiviral activity.  相似文献   

17.
Abstract

Synthetic oligoribonucleotides (RNA) are efficiently prepared with 2′-O-tert-butyldimethylsilyl nucleoside 3′-O-phosphoramidites with labile base-protection; Admf or APac, Gdmf, Cibu, U. After cleavage from the polystyrene support, the exocyclic amine protecting groups are removed with conc. NH4OH: ethanol/3:1 by heating at 55°C for 3–5 h. The 2′-O- silyl protecting groups are removed with tetra-n-butylammonium fluoride in THF or more conveniently with neat triethylamine trihydrofluoride. To gain the advantages of increased capacity on reverse phase HPLC and the convenience of cartridge based purification (OPC, Oligonucleotide Purification Cartridge), the 5′ trityl was left on the RNA as the final protecting group to be removed. The mild conditions which are effective for trityl removal are shown to preserve 3′-5′ phosphate linkage integrity in RNA. The absence of phosphate migration is demonstrated by model studies, utilizing N4 -isobutyryl-5′-O-DMT-3′-O-TBDMS-2′-O-(2-cyanoethyl-N,N-diisopropylphosphoramidite) as a control monomer and digestion by 3′-5′ selective P1 nuclease and alkaline phosphatase and HPLC analysis. Oligoribonucleotides were analyzed by Microgel capillary electrophoresis, anion-exchange HPLC, and the enzymatic digest/HPLC method.

  相似文献   

18.
Abstract

C-Nucleosides of the pyrazolo[1, 5-a]-1, 3, 5-triazine aglycon system have been prepared by palladium-mediated coupling of 8-iodopyrazolo[1, 5-a]-1, 3, 5-triazines. 4-(N, N-Diisobutyloxycarbonyl)amino-8-iodopyrazolo[1, 5-a]-1, 3, 5-triazine and the furanoid glycal 1, 4-anhydro-2-deoxy-3-O[(1, 1 dimethylethyl)diphenylsilyl]-D-erythro-pent-1-enitol coupled in the presence of catalytic palladium(0) to yield, after desilylation of the intermediate silyl enol ether, a C-glycoside analog of adenosine.  相似文献   

19.
Preparative-scale fermentation of gallic acid (3,4,5-trihydroxybenzoic acid) (1) with Beauveria sulfurescens ATCC 7159 gave two new glucosidated compounds, 4-(3,4-dihydroxy-6-hydroxymethyl-5-methoxy-tetrahydro-pyran-2-yloxy)-3-hydroxy-5-methoxy-benzoic acid (4), 3-hydroxy-4,5-dimethoxy-benzoic acid 3,4-dihydroxy-6-hydroxymethyl-5-methoxy-tetrahydro-pyran-2-yl ester (7), along with four known compounds, 3-O-methylgallic acid (2), 4-O-methylgallic acid (3), 3,4-O-dimethylgallic acid (5), and 3,5-O-dimethylgallic acid (6). The new metabolite genistein 7-O-β-D-4″-O-methyl-glucopyranoside (8) was also obtained as a byproduct due to the use of soybean meal in the fermentation medium. The structural elucidation of the metabolites was based primarily on 1D-, 2D-NMR, and HRFABMS analyses. Among these compounds, 2, 3, and 5 are metabolites of gallic acid in mammals. This result demonstrated that microbial culture parallels mammalian metabolism; therefore, B. sulfurescens might be a useful tool for generating mammalian metabolites of related analogs of gallic acid (1) for complete structural identification and for further use in investigating pharmacological and toxicological properties in this series of compounds. In addition, a GRE (glucocorticoid response element)-mediated luciferase reporter gene assay was used to initially screen for the biological activity of the 6 compounds, 26 and 8, along with 1 and its chemical O-methylated derivatives 913. Among the 12 compounds tested, 1113 were found to be significant, but less active than the reference compounds of methylprednisolone and dexamethasone.  相似文献   

20.
Abstract

Reaction of the silylated 6-azauracil (2) with 2-acetamido-1,3,4,6-tetra-O-acetyl-2-deoxy-D-glucose (3) gave 1-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-ß-D-glucopyranosyl)-6-azauracil (4), which gave the free nucleoside 5 on deblocking. Acetalation of 5 gave the monoacetal 6 which was oxidized into the ketone 7. Reduction of 7 gave the allo-nucleoside 9 which on hydrolysis afforded the free nucleoside 10. Alternatively, compound 10 was obtained from mesylation of 6 to give 8 followed by subsequent acetolysis and hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号