首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

A solid-phase reversed(5′-3′) oligodeoxyribonucleotide synthesis on oxalyl and succinyl aminopropyl controlled-pore glass (CPG) is presented. Oxalyl linked oligomers are deprotected without cleavage fiom the support.  相似文献   

2.
Abstract

The preparation of a protected derivative of 5-aza-2′-deoxycytidine carrying the 2-(p-nitrophenyl)ethyl group is described. The new derivative is useful for the preparation of oligonucleotides containing 5-aza-2′-deoxycytidine using a special methodology that avoids the use of ammonia.  相似文献   

3.
Abstract

The preparation of N2, N2-dimethylguanosine is described. The use of the 2-(p-nitrophenyl)ethyl group instead of the benzyl protecting group for the O6 position of the guanine ring resulted in better yields and shorter protocols.  相似文献   

4.
The nucleophilic addition–elimination reaction of 2′,3′,5′-tri-O-acetyl-2-fluoro-O 6-[2-(4-nitrophenyl)ethyl]inosine (8) with [15N]benzylamine in the presence of triethylamine afforded the N 2-benzyl[2-15N]guanosine derivative (13) in a high yield, which was further converted into the N 2-benzoyl[2-15N] guanosine derivative by treatment with ruthenium trichloride and tetrabutyl-ammonium periodate. A similar sequence of reactions of 2′,3′,5′-tri-O-acetyl-2-fluoro-O 6-[2-(methylthio)ethyl]inosine (9) and the 6-chloro-2-fluoro-9-(β-D-ribofuranosyl)-9H-purine derivative (11), which were respectively prepared from guanosine, with potassium [15N]phthalimide afforded the N 2-phthaloyl [2-15N]guanosine derivative (15; 62%) and 9-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)-6-chloro-2-[15N]phthalimido-9H-purine (17; 64%), respectively. Compounds 15 and 17 were then efficiently converted into 2′,3′,5′-tri-O-acetyl[2-15N]guanosine. The corresponding 2′-deoxy derivatives (16 and 18) were also synthesized through similar procedures.  相似文献   

5.
Abstract

O6-(4-Nitrophenyl)inosine (la), O6 -(4-nitrophenyl)guanosine (1c) and O6 -(4-methylumbelliferonyl)inosine (2) were obtained by reaction of 6-chloro-9-(β-D-ribofuranosyl)purine (3a) or 2-amino-6-chloro-9-(β-D-ribofuranosyl)purine (3c) with sodium salts of 4-nitrophenol or 4-methylumbelliferone in N,N-dimethylformamide. Similarly, 6-chloro-9-(β-D-2,3-isopropylideneribofuranosyl)purine (3b) was transformed to 2′,3′-O-isopropylidene-O6-(4-nitrophenyl)inosine (1b). Deprotection of 1b with CF3COOH gave compound la and O6 -(4-nitrophenyl)hypoxanthine (4). Compounds 1a and 1c are substrates for adenosine deaminase releasing 4-nitrophenol which is readily detected visually or spectrophotomemcally. Rate and extent of hydrolysis of la are significantly increased in the presence of purine nucleoside phosphorylase but xanthine oxidase has no influence. A potential fluorogenic analogue 2 is not a substrate for adenosine deaminase.

  相似文献   

6.
Oligonucleotides containing 7-deaza-2′-deoxyxanthosine (1) and 2′-deoxyxanthosine (2) were prepared. The 2-(4-nitrophenyl)ethyl group is applicable for 7-deazaxanthine protection that is removed with DBU by β-elimination, while the deprotection of the allyl residue with Pd (0) catalyst failed. Contrarily, the allyl group was found to be an excellent protecting group for 2′-deoxyxanthosine (2). The base pairing of nucleosides 1 and 2 with the four canonical DNA constituents as well as with 3 within the 12-mer duplexes is studied.  相似文献   

7.
Abstract

Photoinduced addition of methanol to 5(R)-(tert-butyldimethylsilyloxymethyl)-2(5H)-furan-2-one (derived from L-gulono-1, 4-lactone) provided the photoadduct 5(R)-(tert-butyldimethylsiloxymethyl)-4(S)-hydroxymethyl-tetrahydrofuran-2-one, which was converted into two L-series-2′, 3′-dideoxy-3′-hydroxymethyl-nucleosides. In addition, we describe a new method for the chromatographic separation of cytidine anomers using a N-2-(4-nitrophenyl)ethyl carbamate derivative.  相似文献   

8.
Abstract

2-(4-Nitrophenylethyl) methylenebis(phosphonate) (1) has been prepared by reaction of 2-(4-nitrophenyl)ethyl alcohol with methylenebis(phosphonyl) tetrachloride. Compound 1 was treated with diisopropylcarbodiimide (DIC) to give bicyclic intermediate 2, which in reaction with suitably protected 2′-deoxynucleosides 3 gave P1,P2-disubstituted methylenebis(phosphonate)s 4. Removal of the nitrophenylethyl group by β-elimination with DBU afforded the corresponding 2′-deoxynucleoside 5′-methylenebis(phosphonate) analogues 5.

  相似文献   

9.
Summary. Elevated levels of glutathione S-transferases (GSTs) are among the factors associated with an increased resistance of tumors to a variety of antineoplastic drugs. Hence a major advancement to overcome GST-mediated detoxification of antineoplastic drugs is the development of GST inhibitors. Two such agents have been synthesized and tested on the human Alpha, Mu and Pi GST classes, which are the most representative targets for inhibitor design. The novel fluorescent glutathione S-conjugate L-γ-glutamyl-(S-9-fluorenylmethyl)-L-cysteinyl-glycine (4) has been found to be a highly potent inhibitor of human GSTA1-1 in vitro (IC50=0.11±0.01 μM). The peptide is also able to inhibit GSTP1-1 and GSTM2-2 isoenzymes efficiently. The backbone-modified analog L-γ-(γ-oxa)glutamyl-(S-9-fluorenylmethyl)-L-cysteinyl-glycine (6), containing an urethanic junction as isosteric replacement of the γ-glutamyl-cysteine peptide bond, has been developed as γ-glutamyl transpeptidase-resistant mimic of 4 and evaluated in the same inhibition tests. The pseudopeptide 6 was shown to inhibit the GSTA1-1 protein, albeit to a lesser extent than the lead compound, with no effect on the activity of the isoenzymes belonging to the Mu and Pi classes. The comparative loss in biological activity consequent to the isosteric change confirms that the γ-glutamyl moiety plays an important role in modulating the affinity of the ligands addressed to interact with GSH-dependent proteins. The new specific inhibitors may have a potential in counteracting tumor-protective effects depending upon GSTA1-1 activity.  相似文献   

10.
A new caged proton, 1-(2-nitrophenyl)ethyl sulfate (caged sulfate), is characterized by infrared spectroscopy and compared with a known caged, proton 2-hydroxyphenyl 1-(2-nitrophenyl)ethyl phosphate (caged HPP). In contrast to caged HPP, caged sulfate can induce large pH jumps and protonate groups that have pK values as low as 2.2. The photolysis mechanism of caged sulfate is analogous to that of P(3)-[1-(2-nitrophenyl)ethyl] ATP (caged ATP), and the photolysis efficiency is similar. The utility of this new caged compound for biological studies was demonstrated by its ability to drive the acid-induced conformational change of metmyoglobin. This transition from the native conformation to a partially unfolded form takes place near pH 4 and was monitored by near-UV absorption spectroscopy.  相似文献   

11.
Abstract

New photolabile protecting groups have been found in the 2-(2-nitrophenyl)ethoxycarbonyl and the 2-(2-nitrophenyl)ethylsulfonyl group, respectively. The influence of substituents at the phenyl ring as well as the side-chain has been investigated regarding the photolysis rates on irradiation at 365 mn. β-Branching in the side-chain leads to highly increased rates of photodeprotection. A new type of photocleavage mechanism consisting of a photoinduced β-elimination process is proposed.  相似文献   

12.
P-Glycoprotein (P-gp) overexpression is considered to be the leading cause of multidrug resistance (MDR) and failure of chemotherapy for leukemia. In this study, seventeen thiosemicarbazone-containing compounds were prepared and evaluated as potential antileukemia agents against drug resistant K562/A02 cell overexpressing P-gp. Among them, N-hydroxy-6-({(2E)-2-[(3-nitrophenyl)methylidene]hydrazinecarbothioyl}amino)hexanamide could significantly inhibit K562/A02 cells proliferation with an IC50 value of 0.96 μM. Interestingly, N-hydroxy-6-({(2E)-2-[(3-nitrophenyl)methylidene]hydrazinecarbothioyl}amino)hexanamide could dose-dependently increase ROS levels of drug resistant K562/A02 cells, thus displaying a potential collateral sensitivity (CS)-inducing effect and selectively killing K562/A02 cells. Furthermore, N-hydroxy-6-({(2E)-2-[(3-nitrophenyl)methylidene]hydrazinecarbothioyl}amino)hexanamide possessed potent inhibitory effect on HDAC1 and HDAC6, and could promote K562/A02 cells apoptosis via dose-dependently increasing Bax expression, reducing Bcl-2 protein level, and inducing the cleavage of PARP and caspase3. These present findings suggest that N-hydroxy-6-({(2E)-2-[(3-nitrophenyl)methylidene]hydrazinecarbothioyl}amino)hexanamide might be a promising lead to discover novel antileukemia agents against P-gp overexpressing leukemic cells.  相似文献   

13.
Abstract

The phosphoramidites of the naturally occurring modified nucleotides N 2-methylguanosine and N 6,N 6-dimethyladenosine were synthesized and incorporated into short oligoribonucleotides. Described are the syntheses of the phosphoramidites and the procedures used to deprotect oligoribonucleotides in which the O 6 of m2G is protected with a 2-(p-nitrophenyl)ethyl group.  相似文献   

14.
BackgroundA natural product analog, 3-(4-nitrophenyl)-7H-furo[3,2-g]chromen-7-one, which is a nitrophenyl psoralen (NPP) was found to be an effective inhibitor of botulinum neurotoxin type A (BoNT/A).MethodsIn this work, we performed enzyme inhibition kinetics and employed biochemical techniques such as isothermal calorimetry (ITC) and fluorescence spectroscopy as well as molecular modeling to examine the kinetics and binding mechanism of NPP inhibitor with BoNT/A LC.ResultsStudies of inhibition mechanism and binding dynamics of NPP to BoNT/A light chain (BoNT/A LC) showed that NPP is a mixed type inhibitor for the zinc endopeptidase activity, implying that at least part of the inhibitor-enzyme binding site may be different from the substrate-enzyme binding site. By using biochemical techniques, we demonstrated NPP forms a stable complex with BoNT/A LC. These observations were confirmed by Molecular Dynamics (MD) simulation, which demonstrates that NPP binds to the site near the active site.ConclusionThe NPP binding interferes with BoNT/A LC binding to the SNAP-25, hence, inhibits its cleavage. Based on these results, we propose a modified strategy for designing a molecule to enhance the efficiency of the inhibition against the neurotoxic effect of BoNT.General significanceInsights into the interactions of NPP with BoNT/A LC using biochemical and computational approaches will aid in the future development of effective countermeasures and better pharmacological strategies against botulism.  相似文献   

15.
Sulfonamides represent an important class of biologically active compounds. A sulfonamide possessing carbonic anhydrase (CA) inhibitory properties obtained from a pyrazole based sulfonamide, ethyl 1-(3-nitrophenyl)-5-phenyl-3-((5-sulfamoyl-1,3,4-thiadiazol-2-yl)carbamoyl)-1H-pyrazole-4-carboxylate (1), and its metal complexes with the Ni(II) for (2), Cu(II) for (3) and Zn(II) for (4) have been synthesized. The structures of metal complexes (24) were established on the basis of their elemental analysis, 1H NMR, IR, UV–Vis and MS spectral data. The inhibition of two human carbonic anhydrase (hCA, EC 4.2.1.1) isoenzymes I and II, with 1 and synthesized complexes (24) and acetazolamide (AAZ) as a control compound was investigated in vitro by using the hydratase and esterase assays. The complexes 2, 3 and 4 showed inhibition constant in the range 0.1460–0.3930?µM for hCA-I and 0.0740–0.0980?µM for hCA-II, and they had effective more inhibitory activity on hCA-I and hCA-II than corresponding free ligand 1 and than AAZ.  相似文献   

16.
Abstract

The synthesis of 9-[(phosphonomethoxy)methyl]guanine (3) and 9-[2-hydroxy-1-(phosphonomethoxy)ethyl]guanine (4) is described.  相似文献   

17.
Abstract

2′-O-Methyloligoribonucleotides, deoxyoligonucleotides and 2′-O-methyl/ deoxy gapmers were synthesized using solid phase phosphoramidite chemistry employing the 2-(4-nitrophenyl)ethyl (npe) protection strategy. Melting temperatures of the synthesized oligonucleotides as well as their stability against degradation by several different nucleases were determined. 2′-O-Methyloligoribonucleotides showed the highest melting temperatures (Tm's) whereas 2′-O-methyl/deoxy gapmers revealed either slightly higher or surprizingly no thermal stabilities compared with their deoxy analogs when using selfcomplementary sequences. Gapmers with four 2′-O-methyl nucleotides on both ends showed about the same stability as all 2′-O-methyloligoribonucleotides against micrococal nuclease, nuclease S1, and snake venom phosphodiesterase.  相似文献   

18.
A comparative study of two modifications of enzymic reduction of ethyl N-{2-{4-[(2-oxo-cyclohexyl)methyl]phe- noxy}ethyl} carbamate (1), an insect juvenile hormone bioanalog, was performed using Saccharomyces cerevisiae in two bioreactors of different size, 250-ml shake-flask and 1-l fermenter. The two major products of this reduction were obtained in 45–49% (w/w) yields but with > 99% enantiomeric purity. Their absolute configurations were assigned as ethyl (1S,2S)-N-{2-{4-[(2-hydroxycyclohexyl)methyl]phenoxy}ethyl}carbamate (2a) and ethyl (1R,2S)-N-{2-{4-[(2-hydroxycyclohexyl)methyl]phenoxy}ethyl}carbamate (3a).  相似文献   

19.
Since there is evidence that oxalyl thiolesters (RSCOCOO) are present in animal cells, and possibly may participate in the control of metabolism, the present study was undertaken to characterize their reactivity with nucleophiles so that one could gain a better understanding of how they might be affecting the activities of enzymes. At 25°C and neutral pH, N-acetyl-S-oxalyl-2-aminoethanethiol (NAC-S-Ox) reacts rapidly with cysteamine (2-aminoethanethiol) to give N-acetylcysteamine and N-oxalylcysteamine. Under similar conditions, other aminothiols, such as cysteine, homocysteine, penicillamine, and cysteine ethyl ester, also react rapidly with NAC-S-Ox, but non-thiol-containing amines, such as alanine, alanine ethyl ester, glycine, and S-methylcysteine, react more than four orders of magnitude less rapidly. The aminothiol reactions apparently proceed by rate-determining oxalyl transfer to the thiol followed by a rapid intramolecular S- to N-oxalyl migration. The reactions follow second-order kinetics with the thiolate anion being the reactive nucleophile. At 25°C and ionic strength 1.0 , kN, defined in the equation, rate = kN[RS][NAC-S-Ox], has the following values ( −1 s−1) for the anion of the reacting thiol: cysteamine, 170; cysteine, 260; cysteine ethyl ester, 76; homocysteine, 380. Rate data for the reaction of NAC-S-Ox with hydroxylamine, imidazole, hydroperoxide, and hydroxide were also obtained. The reaction of S-oxalyl-p-thiocresol with thiol anions under the same conditions gives the following values for kN ( −1 s−1 × 10−3): glutathione, 5.6; N-acetylcysteamine, 3.7; pantetheine, 4.8; 8-mercaptooctanoic acid, 4.5; 6-mercaptooctanoic acid, 1.0; dihydrolipoic acid, 8.2. These results indicate that oxalyl transfers from oxalyl thiolesters to thiol anions occur more than two orders of magnitude more rapidly than corresponding acetyl transfers, and that under physiological conditions any in vivo oxalyl thiolester would equilibrate within minutes with virtually every thiol in the cell, including those attached to enzymes. Consequently, it is proposed that one mechanism by which oxalyl thiolesters may function in vivo to alter the catalytic activities of enzymes is to covalently modify enzymic thiols by acylation with an oxalyl group.  相似文献   

20.
Abstract

6-(4-Chloro-3-nitrophenyl)-4-oxo-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbonitrile (4) was prepared and was reacted with ethyl chloroacetate, hydrazine hydrate, 4-chloroaniline, formaldehyde, acetic anhydride, formic acid, carbon disulfide, 4-cyanobenzaldehyde, triethyl orthoformate, D-sugars, 4-aminoacetophenone, benzoyl choride and cyclohexanone to afford a series of new uracil derivatives (518). Examination of some of the prepared compounds for their antimicrobial, antioxidant and anticancer activities was conducted. Among the tested samples, compound 17 was the most active substance against the gram-positive bacteria and was more potent than the reference drug Cefoperazone. Moreover, the antibacterial activity of 17 was higher against gram-negative bacteria. Compounds 6 and 13 reached a higher scavenging ability toward DPPH radicals and are better candidates for antioxidant activity. Also, compounds 6 and 13 had no significant anticancer activity toward liver cancer (Hep G2) and breast cancer (MCF-7) cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号