首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

With the aid of molecular modelling both adenosine and adenosine A, receptor antagonists belonging to various chemical classes were compared. A model for the antagonist binding site was developed. As a consequence 1H-imidazo[4, 5-c]-quinolin-4-amines were synthesized, constituting a novel class of potent non-xanthine adenosine receptor antagonists.  相似文献   

2.
Aims5-HT6 receptor subtype is predominantly expressed in the brain, and preclinical evidence suggests its potential role in the cognitive function. Brain microdialysis studies demonstrated that 5-HT6 antagonists enhance not only cholinergic but also monoaminergic neurotransmission, a property that may differentiate from acetylcholine esterase (AChE) inhibitors such as donepezil. In this study we compared the antidepressant-like effects of 5-HT6 antagonists with donepezil to determine whether their different effects on monoamines are behaviorally relevant.Main methodsSelective 5-HT6 antagonists (SB-399885 and SB-271046) and donepezil were evaluated in the rat forced swimming test since this is known to identify drugs such as antidepressants which can increase brain monoamine levels. Binding assay was undertaken by using [125I]SB-258585 to measure brain 5-HT6 receptor occupancy.Key findingsSystemic administration of SB-399885 (3 and 10 mg/kg, i.p.) and SB-271046 (10 and 30 mg/kg, i.p.) produced a significant reduction of immobility time in the rat forced swimming test with a similar profile in terms of 5-HT6 receptor occupancy (62 and 96% for 3 and 10 mg/kg SB-399885 respectively; 56 and 84% for 10 and 30 mg/kg SB-271046 respectively). In contrast, donepezil (0.5 and 1 mg/kg i.p.) did not show any effects in this model.SignificanceThese data suggest that 5-HT6 antagonists, at doses corresponding to those occupy central 5-HT6 receptors, could have an antidepressive effect in humans. This may differentiate 5-HT6 antagonists from AChE inhibitors with respect to the mood control in the symptomatic treatment of Alzheimer's disease.  相似文献   

3.
BackgroundIntegrins are extracellular matrix receptors involved in several pathologies. Despite homologies between the RGD-binding α5β1 and αvβ3 integrins, selective small antagonists for each heterodimer have been proposed. Herein, we evaluated the effects of such small antagonists in a cellular context, the U87MG cell line, which express both integrins. The aim of the study was to determine if fibronectin-binding integrin antagonists are able to impact on cell adhesion and migration in relationships with their defined affinity and selectivity for α5β1 and αvβ3/β5 purified integrins.MethodsSmall antagonists were either selective for α5β1 integrin, for αvβ3/β5 integrin or non-selective. U87MG cell adhesion was evaluated on fibronectin or vitronectin. Migration assays included wound healing recovery and single cell tracking experiments. U87MG cells stably manipulated for the expression of α5 integrin subunit were used to explore the impact of α5β1 integrin in the biological assays.ResultsU87MG cell adhesion on fibronectin or vitronectin was respectively dependent on α5β1 or αvβ3/β5 integrin. Wound healing migration was dependent on both integrins. However U87MG single cell migration was highly dependent on α5β1 integrin and was inhibited selectively by α5β1 integrin antagonists but increased by αvβ3/β5 integrin antagonists.ConclusionsWe provide a rationale for testing new integrin ligands in a cell-based assay to characterize more directly their potential inhibitory effects on integrin cellular functions.General significanceOur data highlight a single cell tracking assay as a powerful cell-based test which may help to characterize true functional integrin antagonists that block α5β1 integrin-dependent cell migration.  相似文献   

4.
The development of adenosine A2A receptor antagonists has received much interest in recent years for the treatment of neurodegenerative diseases. Based on docking studies, a new series of 2-arylbenzoxazoles has been identified as potential A2AR antagonists. Structure-affinity relationship was investigated in position 2, 5 and 6 of the benzoxazole heterocycle leading to compounds with a micromolar affinity towards the A2A receptor. Compound F1, with an affinity of 1?μm, presented good absorption, distribution, metabolism and excretion properties with an excellent aqueous solubility (184?μm) without being cytotoxic at 100?μm. This compound, along with low-molecular weight compound D1 (Ki?=?10?μm), can be easily modulated and thus considered as relevant starting points for further hit-to-lead optimisation.  相似文献   

5.
Abstract

Conformational energy calculations were carried out on three non-peptide antagonists of oxytocin and vasopressin: penicilide (compound 1; selective for oxytocin receptors), 1- {1-[4-(3-acetylaminopropoxy (benzoyl]-4-piperidyl}-3,4-dihydro-2(1H)-quinoline (compound 2; selective for vasopressin V1 receptors) and 5-dimethylamino-1-{(2-methylbenzylamino)-benzoyl}-2,3,4,5–tetrahydro-1H-benzapine (compound 3; selective for vasopressin V2 receptors). The obtained low-energy conformations of compound 1 were compared with low-energy conformations of oxytocin (OT) and low-energy conformations of compounds 2 and 3 were compared with low-energy conformations of arginine vasopressin (AVP). It was found that the affinity of the non-peptide antagonists and their selectivity for vasopressin and oxytocin receptors is probably connected with mimicking the aromatic rings of the Tyr2 and the Phe3 residues of AVP in the case of compounds 2 and 3 and with mimicking the Tyr2 residue and the Ile3 or Leu8 residues of OT by the outer benzene ring and the isobutyl group of compound 1. Application of the results in the design of more potent non-peptide antagonists of OT and VP is also discussed.  相似文献   

6.
Abstract

Among the seven fungal (Gliocladium virens, Trichoderma hamatum, T. harzianum, T. koningii, T. longibrachiatum, T. pseudokoningii and T. viride) and two bacterial (Bacillus subtilis and Pseudomonas fluorescens) antagonists screened against C. gloeosporioides under in vitro conditions, T. harzianum exhibited maximum inhibition followed by Pseudomonas fluorescens at 5 days after incubation. These fungal and bacterial antagonists were selected for application to fruits infected with pathogens. Fruits inoculated with C. gloeosporioides were dipped in spore/cell suspensions of fungal/bacterial antagonists and kept for different durations. The fungal antagonists T. harzianum and P. fluorescens were effective in checking the spread of pathogens on fruits compared with the pathogen-inoculated control.  相似文献   

7.
AimsThis study evaluates ocular (iris, ciliary body and ciliary process) and nonocular (atria and lung) β-adrenoceptors in rabbit to characterize the plasma membrane β-adrenoceptors and binding affinities of β-adrenoceptor antagonists.Main methodsThe tissue segment binding method with a hydrophilic radioligand (?)-4-[3-t-butylamino-2-hydroxypropoxy]-[5,7-3H]benzimidazol-2-one ([3H]-CGP12177) was employed.Key findingsSpecific and saturable binding of [3H]-CGP12177 to intact tissue segments was detected by using (±)-propranolol to define nonspecific binding, showing a single population of plasma membrane binding sites with high affinity. Competition experiments with selective β1- and β2-adrenoceptor antagonists revealed a single population of β2-adrenoceptors in ocular tissues and of β1-adrenoceptors in atria, but mixed populations of β1- and β2-adrenoceptors in 70% and 30%, respectively, in lung. A competition curve for timolol was biphasic in lung and its binding affinity for β2-adrenoceptors was approximately 158-fold higher than for β1-adrenoceptors, indicating the β2-selectivity of timolol. In contrast, competition curves for stereoisomers of befunolol, carteolol, and propranolol were monophasic in all tissues. The (?)-enantiomers of these antagonists were more potent than corresponding (+)-enantiomers in displacing from [3H]-CGP12177 binding, and the isomeric potency ratios of befunolol and carteolol were less than those of propranolol.SignificanceThis study with tissue segment binding method suggests that the binding affinity of (?)-enantiomers of β-adrenoceptor antagonists for plasma membrane β-adrenoceptors (β1-adrenoceptors of atria, β2-adrenoceptors of ocular tissues, and mixed β1-/β2-adrenoceptors of lung) is higher than that of corresponding (+)-enantiomers and their stereoselectivity is different between β-adrenoceptor antagonists.  相似文献   

8.
Abstract

Adenosine A1 receptors in the smooth muscle cell line DDT1 MF-2 were characterized by radioligand binding using the antagonist [3H]-8-cyclopentyl-1,3-dipropylxanthine ([3H]DPCPX) as the ligand. Binding properties of adenosine agonists and antagonists to both intact cells and membranes were investigated.  相似文献   

9.
Summary The P2X7 nucleotide receptor is an ATP-gated ion channel that plays an important role in bone cell function. Here, we investigated the effects of L-tyrosine derivatives 1–3 as potent P2X7 antagonists on human primary osteoclasts. We found that the level of expression of P2X7 receptor increased after treatment with the derivatives 1–3, together with the induction of high levels of apoptosis. This effect is associated with activation of caspase-3 and inhibition of expression of IL-6. Interestingly, no pro-apoptotic effect of compounds 1–3 was found on human osteoblasts. Our results suggest that the development of specific P2X7 receptor antagonists may be considered a useful tool to modulate apoptosis of human osteoclasts. Since bone loss due to osteoclast-mediated resorption represents one of the major unsolved problem in osteopenic disorders, the identification of molecules able to induce apoptosis of osteoclasts is of great interest for the development of novel therapeutic strategies.  相似文献   

10.
Terephthalic acid based derivatives containing β- and γ-amino acid residues were prepared as antagonists of the leukocyte cell adhesion process that is mediated through the interaction of the very late antigen 4 (VLA-4) and the vascular cell adhesion molecule 1 (VCAM-1). The compounds 2, 1012, 14, and 1617 inhibited the adhesion in a cell based assay in the low and sub micromolar range.  相似文献   

11.
Thromboxane A2 (TXA2) is an endogenous arachidonic acid derivative closely correlated to thrombosis and other cardiovascular diseases. The action of TXA2 can be effectively inhibited with TXA2 receptor antagonists (TXRAs). Previous studies have attempted to describe the interactions between the TXA2 receptor and its ligands, but their conclusions are still controversial. In this study, ligand-based computational drug design is used as a new and effective way to investigate the structure-activity relationship of TXRAs. Three-dimensional pharmacophore models of TXRAs were built with HypoGenRefine and HipHop modules in CATALYST software. The optimal HypoGenRefine model was developed on the basis of 25 TXRAs. It consists of two hydrophobic groups, one aromatic ring, one hydrogen-bond acceptor and four excluded volumes. The optimal HipHop model contains two hydrophobic groups and two hydrogen-bond acceptors. These models describe the key structure-activity relationship of TXRAs, can predict their activities, and can thus be used to design novel antagonists. Figure Optimal three-dimensional pharmacophore models of TXA2 receptor antagonists (TXRAs) built with HypoGenRefine (a) and HipHop (b) modules. a Hypo-1 model mapped with compounds 11 (purple), and 20 (green). b Hypo-2 model mapped with compounds 31 (green) and 64 (yellow). Spheres: Green Hydrogen bond acceptors (HBA), cyanhydrophobic (H), orange aromatic rings (RA), black excluded volumes (EV) Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Lu C  Jin F  Li C  Li W  Liu G  Tang Y 《Journal of molecular modeling》2011,17(10):2513-2523
5-hydroxytryptamine-2c (5-HT2c) receptor antagonists have clinical utility in the management of nervous system. In this work, ligand-based and receptor-based methods were used to investigate the binding mode of h5-HT2c receptor antagonists. First, the pharmacophore modeling of the h5-HT2c receptor antagonists was carried out by CATALYST. Then, the h5-HT2c antagonists were docked to the h5-HT2c receptor model. Subsequently, the comprehensive analysis of the pharmacophore and docking results revealed the structure-activity relationship of 5-HT2c receptor antagonists and the key residues involved in the interactions. For example, three hydrophobic points in the ligands corresponded to the region surrounded by Val135, Val208, Phe214, Ala222, Phe327, Phe328 and Val354 of the h5-HT2c receptor. The carbonyl group of compound 1 formed a hydrogen bond with Asn331. The nitrogen atom in the piperidine of compound 1 corresponding to the positive ionizable position of the best pharmacophore formed the electrostatic interactions with the carbonyl of Asp134, Asn331 and Val354, and with the hydroxyl group of Ser334. In addition, a predictive CoMFA model was developed based on the 24 compounds that were used as the training set in the pharmacophore modeling. Our results were not only useful to explore the detailed mechanism of the interactions between the h5-HT2c receptor and antagonists, but also provided suggestions in the discovery of novel 5-HT2c receptor antagonists.  相似文献   

13.
Abstract

The rationale for proposing the title compounds as potential adenosine diphosphate receptor antagonists is discussed. A convenient synthesis and formulation for the cyclopentenyl amino alcohol 8 is described.  相似文献   

14.
Summary InE. coli, sulfanilic acid, sulfanilamide, sulfapyridine, sulfapyrimidine and sulfathiazol are antagonized by the same series of non competitive antagonists,viz., methionine, xanthine, serine, thymine and valine. This seems to indicate that the biosynthesis of these substances is successively inhibited by increasing concentrations of these sulfadrugs; the synthesis of methionine being inhibited first, that of valine only by excessive concentrations. Though the absolute concentrations vary with the drug the relative sensitivity of the five enzyme systems are very much the same. This again shows that the intrinsic toxicity of the sulfadrugs is the same.I: Ann. de l'Inst. Pasteur62, 616, 1939. II: Antonie van Leeuwenhoek7, 25, 1941. III: Ibid.7, 77, 1941. IV: Ibid7, 153, 1941. V: Ibid.7, 161, 1941. VI: Ibid.8, 10, 1942. VII: Ibid.8, 86, 1942. VIII: Ibid.8, 139, 1942. IX: Ibid.9, 115, 1943. X: Ibid.10, 1, 1944–1945. XI: Arch. of Biochemistry18. 97, 1948.  相似文献   

15.
Abstract

Strategies toward the further lead optimization of N 6-cyclopentyl-3′-amido-3′-deoxyxylofuranosyladenosines as adenosine A1 receptor antagonists including the synthesis of the 5′-deoxy-analogues and a practical method for parallel amidation are presented.  相似文献   

16.
Despite the substantial clinical success of aspirin and clopidogrel in secondary prevention of ischemic stroke, up to 40% of patients remain resistant to the available antiplatelet treatment. Therefore, there is an urgent clinical need to develop novel antiplatelet agents with a novel mechanism of action. Recent studies revealed that potent alpha 2B-adrenergic receptor (alpha 2B-ARs) antagonists could constitute alternative antiplatelet therapy. We have synthesized a series of N-arylpiperazine derivatives of 4,4-dimethylisoquinoline-1,3(2H,4H)-dione as potential alpha 2B receptor antagonists. The most potent compound 3, effectively inhibited the platelet-aggregation induced both by collagen and ADP/adrenaline with IC50 of 26.9?μM and 20.5?μM respectively. Our study confirmed that the alpha 2B-AR antagonists remain an interesting target for the development of novel antiplatelet agents with an alternative mechanism of action.  相似文献   

17.
BackgroundSomatostatin regulates numerous endocrine processes, including glucose homeostasis. The contribution and effects of the 5 somatostatin receptors are still unclear, in part due to the lack of suitable subtype specific receptor antagonists. We explored the effects of two novel, non-peptidic, orally bioavailable somatostatin receptor subtype 5 antagonists named Compound A and Compound B on glycemia in animal models of type 2 diabetes after an initial in vitro characterization.Methods and resultsCompound A led to a dose-dependent decrease in glucose and insulin excursions during an OGTT in Zucker (fa/fa) rats after single treatment by up to 17% and 49%, respectively. Diet-induced obese mice showed after three weeks treatment with compounds A and B a dose-dependent decrease of the glucose excursion of up to 45% and 37%, respectively. In contrast to the acute effect observed in Zucker rats, Compound A showed a dose-dependent insulin increase by up to 72%, whereas body weight, liver triglycerides, ALT and AST were dose-dependently decreased.ConclusionsSSTR5 antagonists have the potential for short- and long-term improvements of the glucose homeostasis in rodent models of type 2 diabetes.Further work on the mechanism and the relevance for human disease is warranted.  相似文献   

18.
Summary Nine potent and selective substance P receptor antagonists (NK1 -) were analyzed with respect to their conformational space, with the aim to suggest probable conformations adopted at the receptor site and superposition rules for each structure (pharmacophore mapping). Key atoms within the ligands as well as receptor site points were considered in order to identify acceptable solutions (DISCO program). The results obtained allowed the suggestion or probable peptidic pharmacophores based on the structure of 1 (FK888). This knowledge was used to search commercial databases. The number and diversity of known retrieved NK1 antagonists allowed a general evaluation of the proposed pharmacophores. Moreover, a search in our proprietary database detected a short peptide with modest affinity but high selectivity for the NK1 receptor. The combination of molecular modeling with database searches is useful in a strategy aiming to develop new NK1 antagonists starting from existing knowledge.  相似文献   

19.
ObjectiveThe Wnt signaling pathway is an important modulator of bone metabolism. This study aims to clarify the changes in Wnt antagonists in active and biochemically controlled acromegalic patients.MethodsWe recruited 77 patients recently diagnosed with acromegaly. Of those, 41 patients with complete follow-up data were included. Thirty healthy patients matched for age, sex, and body mass index served as controls. At baseline and posttreatment, Wnt antagonists (sclerostin [SOST], dickkopf-related protein 1 [DKK-1], and Wnt inhibitory factor 1 [WIF-1]), bone turnover markers (osteocalcin, procollagen type 1 N-terminal propeptide [P1NP], and C-terminal telopeptide of type 1 collagen [CTX]) and the bone remodeling index were investigated.ResultsAcromegalic patients had higher serum osteocalcin, P1NP, and CTX and a higher bone remodeling index than controls (P < .01). Serum SOST, DKK-1, and WIF-1 levels were significantly decreased in patients compared to controls (all P < .01). Serum SOST and WIF-1 levels were negatively correlated with growth hormone levels; SOST levels were positively correlated with WIF-1. After treatment, serum bone turnover markers and the bone remodeling index decreased, while SOST and WIF-1 significantly increased (P < .05). DKK-1 levels did not change compared to baseline (P > .05). In biochemically controlled patients, SOST and WIF-1 levels and bone turnover markers were restored and did not differ from those of the control participants (all P > .05).ConclusionPatients with active acromegaly exhibited significantly decreased Wnt antagonist levels. The reduction in Wnt antagonists is a compensatory mechanism to counteract increased bone fragility in active acromegaly.  相似文献   

20.
Abstract

Vasopressin and in particular 1-deamino-8-D-arginine vasopressin (DDAVP) can release factor VIII (FVIII) and tissue plasminogen activator (tPA) to the blood. In the present study DDAVP was injected in conscious dogs which had been preloaded with specific antagonists either against vasopressin's vasopressor response (V1-receptors) or its antidiuretic response (V2-receptors). The presence in the blood of either of the antagonists had no effect on the increase of FVIII or tPA following stimulation with DDAVP. It is therefore concluded that the effect of DDAVP on coagulation and fibrinolysis is elicited via a new class of receptors different from the known V1- and V2-receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号