首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

LCA-CPG-nucleoside 5′-O-(O-β-cyanoethyl-H-phosphonates) react with 3′-amino-2′,3′-dideoxynucleoside in the presence of iodine giving in a high yield N3′→P5′ phosphoramidate oligonucleotides.  相似文献   

2.
Abstract

The preparation of a protected derivative of 5-aza-2′-deoxycytidine carrying the 2-(p-nitrophenyl)ethyl group is described. The new derivative is useful for the preparation of oligonucleotides containing 5-aza-2′-deoxycytidine using a special methodology that avoids the use of ammonia.  相似文献   

3.
Abstract

Conformationally rigid cyclouridylic acid derivatives 2 and 3 having ethylene and propylene bridges, respectively, between the uracil 5-position and the 5′-phosphate group were synthesized. These intramolecularly cyclized compounds have predominantly the ribose pucker of C3′-endo and the g+ orientation around the C4′-C5′ bond.  相似文献   

4.
Abstract

Uniformly modified oligonucleotide N3′ → P5′ phosphoramidates were synthesized. The prepared N3′ → P5′ phosphoramidates form extremely stable duplexes and triplexes with complementary nucleic acids. Moreover, these compounds are highly resistant to enzymatic hydrolysis by snake venom phosphodiesterase and cellular nucleases and they show high antisense activity in vitro and in vivo.  相似文献   

5.
Abstract

In order to find the effects of unnatural nucleosides on the stability of duplex, several oligonucleotides containing 1-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)-uracil(FAU),-cytosine (FAC) and -thymine (FMAU) were synthesized by two alternative approaches: phosphoramidite method on an ABI 392 synthesizer and H-phosphonate procedure on our GeneSyn I universal module synthesizer. It was shown from the melting profiles that the presence of FMAU has a large stabilizing effect on the duplex. Replacement of thymidine with FAU, or deoxycytidine with FAC resulted in the formation of less stable duplexes. Temperature-dependent CD spectroscopy demonstrated that the structures of the fluorine containing oligomers are very similar to those of unmodified oligomers.  相似文献   

6.
Abstract

The best approach for the synthesis of1-(3-azido-2,3-dideoxy-β-D-erythro-pento-furanosyl)lumazine (5) and its 6,7-dimethyl- (4) and 6,7-diphenyl derivatives (3) has been found in the interconversion of the corresponding 1-(2-deoxy- β-threo-pentofuranosyl)-lumazines. Monomethoxytritylation at the 5′-position (1 7, 3 4, 4 9) followed by mesylation at the 3′-OH group and subsequent nucleophilic displacement by lithium azide afforded 1 9, 2 9 and 4 7 which were deprotected by acid treatment to give 3–5 in good yields. The syntheses of 1-(2,3-dideoxy-β-D-glycero-pentofuranosyl)-6,7-diphenyllumazine (6) and its 6,7-dimethyl derivative (7) were achieved from 1-(2-deoxy-β-D-erythro-pentofuranosyl)-6,7-diphenyllumazine and the corresponding 6,7-dimethyllumazine (2 6) via their 5′-O-p-toluoyl- (2 0, 3 0), and 3′-deoxy-3′-iodo derivatives (2 4, 3 1) to form, after radical dehalogenation and final deprotection, 6 and 7. The newly synthesized lumazine nucleosides have been characterized by elemental analyses, UV-and NMR spectra.  相似文献   

7.
Abstract

The synthesis of free 5′-thiol-modified oligonucleotides using a 4,4′,4″-trimethoxytrityl (TMTr)-protected linker and standard Poly-PakTM purification has been described.  相似文献   

8.
9.
Cystathionine γ-synthase and β-cystathionase activities were found to be present in cell-free extract of Corynebacterium glutamicum. The reactions catalyzed by cystathionine γ-synthase and β-cystathionase were characterized with respect to Michaelis constant, pH optimum, incubation time and optimal enzyme concentration. Cystathionine γ-synthase was sensitive to the inhibition by S-adenosylmethionine. Formation of cystathionine γ-synthase and β-cystathionase was repressed by the addition of methionine to the growth medium although this repression appeared to be non-coordinate.

The regulation of methionine biosynthesis in C. glutamicum was discussed on the basis of these findings.  相似文献   

10.
Two NAD-dependent dehydrogenases which oxidize secondary alcoholic groups at the Cα position of dimeric lignin model compounds were purified from Pseudomonas sp. TMY1009. These enzymes have been designated Cα-dehydrogenase I and II (DH-I and DH-II). DH-II was purified to electrophoretic homogeneity. The molecular weight of DH-II, which is composed of four identical subunits, is 125,000. DH-I was partially purified and the molecular weight of DH-I is 94,000. Both DH-I and DH-II are active for three kinds of dimeric lignin model compounds related to major lignin substructures, although their specificities and affinities are different.  相似文献   

11.
Abstract

Three modified nucleosides were designed with the aim of achieving triplet formation with the CG base pair of duplex DNA. Direct anthraniloylation of 2′-deoxycytidine, using isatoic anhydride, afforded the novel N 4-anthraniloyl-2′-deoxycytidine. Much improved preparations of N 4-carbamoyl-2′-deoxycytidine and of N 4-ureidocarbonyl-2′-deoxycytidine were accomplished. The modified nucleosides were incorporated into oligonucleotides. Thermal denaturation studies and gel mobility shift analysis suggest that these nucleosides do not form base triplets with any of the four base pairs of DNA.  相似文献   

12.
Abstract

Parameters of cooperative interactions of two or three oligodeoxyribonucleotides or their derivatives bound with the adjacent sites of the complementary template were measured using method of “complementary addressed modification titration” (CAMT). Complementary template (target) were modified with the reactive oligonucleotide derivatives (reagents) bearing covalently attached alkylating 4-[N-(2-chloroethyl)-N-methylaminojbenzylamino- group (C1RCH2NH)- at 5′-terminal phosphate. The targets had only one binding site for the reagent and either no (T10), or one (T'22 and T22) or two sites (T26) for the oligonucleotides (effectors) cooperatively bound with the adjacent sites on the template. Both unmodified oligonucleotides E1, E2 and their derivatives E1 phn, E2 phn bearing N- (2-hydroxyethyl)-phenazinium residues Phn- both at 5′- and 3′- ends covalently linked via ethylenediamine linker were used as effectors. Effectors E1 and E2 (E1 Phn and E2 Phn) bind, respectively, upstream or downstream from the reagent. Hexameric (X6) or octameric (X8 or X8m) reagents were used for the target modification. The reagent X8m formed one TT-mismatch with the target at the end opposite to location of the reactive moiety. The cooperativity parameter values characterizing the mutual interactions between the reagents X6, X8, X8m and effectors E1, E2, E1 phn, E2 Phn have been found as the ratio of the association constants of the reagents in the presence of effectors. The association constants were calculated from the dependencies of the target modification extent on initial concentrations of the reagents. The use of T26 existing both in linear and hairpin conformations permitted us to estimate additionally the role of indirect cooperativity originating from the induction of the target conformational change by the effectors. The following conclusions were done from the quantitative results. The efficiency of direct cooperativity is independent on the length of oligonucleotide for the same nature of the contact. The cooperativity parameter increases by factor about 3 in the presence of Phn-group covalently attached to oligonucleotides and located at the junctions. The presence of either alkylating group CIRCH2NH- or TT-mismatch at the junctions eliminates cooperative interaction between the bases. In the same time sufficiently effective cooperative interaction takes place in the case of simultaneous presence of both Phn- and either CIRCH2NH- group or TT-mismatch at the junction.  相似文献   

13.
Abstract

A number of 1-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)uracil and -cytosine nucleosides substituted at the 5 position with a nitrophenyl or nitrobenzyl group were synthesized from 5-phenyl- and 5-benzyluracil via condensation of the fluorinated sugar, followed by nitration. The corresponding amino analogues were also prepared by reduction of the nitro nucleosides. The uracil nucleosides were converted into the corresponding cytosine nucleosides by way of the triazole intermediates. None of these nucleosides exhibited significant activity against herpes simplex virus type 1 in Vero cells. However, cytosine nucleosides containing the o-nitrophenyl, p-nitrophenyl, p-nitrobenzyl or p-aminobenzyl substituent were found to be toxic (even at 1 μM) to uninfected Vero cells, although they were essentially nontoxic in HL-60 cells. The 5′-monophosphates of the uracil nucleosides were inhibitors of the reaction catalyzed by purified Ehrlich ascites carcinoma thymidylate synthase, the 5-phenyluracil nucleotides causing a strong inhibition, competitive vs dUMP, described by the Ki value of 0.01 μM.  相似文献   

14.
Abstract

A defined chemical synthesis of the cyclic dinucleotides, ApAp, ApUp, and UpUp has been devised, based on modern phosphotriester methods. These cyclic dinucleotides have been shown to inhibit RNA polymerase. The 1H NMR spectra of the protected dimers show a preference for the 2E form, while the spectra of the unprotected dimers show the 3E form to be favored. The circular dichroism spectra show a negative long wavelength transition; however, ApUp does not show the short wavelength maximum present in the spectra of APAP and UpUp.  相似文献   

15.
We introduce a novel versatile phosphoramidite building block for the modification of oligonucleotides (ONs) with acyl hydrazides on the 5′- or 3′-terminus, or both. The reaction of these hydrazide functionalized ONs with 4-methoxyphenylaldehyde is demonstrated for solution derivatization. Hydrazides are considered nowadays as promising reactants, which show enhanced reactivity at neutral and slightly acidic conditions and higher stability of yielding products as compared to the aliphatic amines, which are broadly used for ONs derivatization.

Our method to introduce hydrazides into ONs employs a phosphoramidite modifier designed to split, during ammonia or lithium hydroxide treatment, into two hydrazides via β-elimination of a central bis-2-carbonylethoxysulfone unit. It allows the creation of ONs derivatized with a hydrazide moiety at the 5′-, 3′- and both 5′- and 3′-termini, as well as two different hydrazide containing ONs at the same time, viz. in one sequence on the same solid support. In latter case one can, for example, synthesize two hydrazide containing ONs, where one is 5′-modified and second one is 3′-modified.  相似文献   

16.
Abstract

3,4-Diaryl-4,5-dihydro-1,2,4-triazole-5-thiones (1a-c) were silylated to give compounds (2a-c) which were condensed with 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose (3) in the presence of trimethylsilyl trifluoromethane sulfonate to afford the corresponding nucleosides 4a-c. Treatment of 4a-c with sodium methoxide in methanol at room temperature afforded the debenzoylated nucleosides 5a-c. The reaction of 5a with acetone in the presence of p-toluenesulfonic acid gave the 2′, 3′-isopropylidene derivative (6a). Phosphorylation of 6a with phosphoryl chloride and triethylphosphate followed by treatment with barium hydroxide afforded barium 3,4-diphenyl-4,5-dihydro(β-D-ribofuranosyl)-1,2,4-triazole-5-thione-5′- monophosphate, which gave after lyophilization the free acid (7a)  相似文献   

17.
Abstract

5′3′-O-protected 4-N-tosyl-2′-deoxycyt id ine was converted with 1,6-diaminohexane to 4-N-/6-ami nohexyl/-2′-deoxycyt id i ne and then into 5′-0-d imethoxytr i ty 1 -k-N-/(-tr if luoroacetamidohexyl 1–2 ′-deoxycyt id ine, The latter was used to prepare oligonucleotides by the phosphoramidite approach. Deprotected oligomers were labeled with biotin.  相似文献   

18.
Abstract

The crystal structure of a DNA. octamer d(GCGTA.CGC) complexed to an antitumor antibiotic, triostin A, has been solved and refined to 2.2 Å resolution by x-ray diffraction analysis. The antibiotic molecule acts as a true bis intercalator surrouding the d(CpG) sequence at either end of the unwound right-handed DNA. double helix. A.s previously observed in the structure of triostin A.—d(CGTA.CG) complex (A.H.-J. Wang, et. al., Science, 225,1115–1121 (1984)), the alanine amino acid residues of the drug molecule form sequence-specific hydrogen bonds to guanines in the minor groove. The two central A · T base pairs are in Hoogsteen configuration with adenine in the syn conformation. In addition, the two terminal G · C base pairs flanking the quinoxaline rings are also held together by Hoogsteen base pairing. This is the first observation in an oligonucleotide of. Hoogsteen G · C base pairs where the cytosine is protonated. The principal functional components of a bis-intercalative compound are discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号