首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A detailed doublet potential energy surface for the reaction of CH with CH3CCH is investigated at the B3LYP/6-311G(d,p) and G3B3 (single-point) levels. Various possible reaction pathways are probed. It is shown that the reaction is initiated by the addition of CH to the terminal C atom of CH3CCH, forming CH3CCHCH 1 (1a,1b). Starting from 1 (1a,1b), the most feasible pathway is the ring closure of 1a to CH3–cCCHCH 2 followed by dissociation to P 3 (CH3–cCCCH+H), or a 2,3 H shift in 1a to form CH3CHCCH 3 followed by C–H bond cleavage to form P 5 (CH2CHCCH+H), or a 1,2 H-shift in 1 (1a, 1b) to form CH3CCCH2 4 followed by C–H bond fission to form P 6 (CH2CCCH2+H). Much less competitively, 1 (1a,1b) can undergo 3,4 H shift to form CH2CHCHCH 5. Subsequently, 5 can undergo either C–H bond cleavage to form P 5 (CH2CHCCH+H) or C–C bond cleavage to generate P 7 (C2H2+C2H3). Our calculated results may represent the first mechanistic study of the CH + CH3CCH reaction, and may thus lead to a deeper understanding of the title reaction.  相似文献   

2.

The Z- and E-thymine and cytosine pronucleotides 3d, 4d, 3e, and 4e of methylenecyclopropane nucleosides analogues were synthesized, evaluated for their antiviral activity against human cytomegalovirus (HCMV), herpes simplex virus 1 and 2 (HSV-1 and HSV-2), varicella zoster virus (VZV), Epstein-Barr virus (EBV), human immunodeficiency virus type 1 (HSV-1), and hepatitis B virus (HBV) and their potency was compared with the parent compounds 1d, 2d, 1e, and 2e. Prodrugs 3d and 4d were obtained by phosphorylation of parent analogues 1d or 2d with reagent 8. A similar phosphorylation of N4-benzoylcytosine methylenecyclopropanes 9a and 9b gave intermediates 11a and 11b. Deprotection with hydrazine in pyridine–acetic acid gave pronucleotides 3e and 4e. The Z-cytosine analogue 3e was active against HCMV and EBV. The cytosine E-isomer 4e was moderately effective against EBV.  相似文献   

3.
Abstract

The biotransformation of arenobufagin (1) and cinobufotalin (2), isolated from the natural medicine Chan Su, by Alternaria alternata AS 3.4578 was carried out. Incubation of 1 and 2 afforded six metabolites: 3-oxo-arenobufagin (1a), ψ-bufarenogin (1b), 3-oxo-ψ-bufarenogin (1c), 3-oxo4-derivative of cinobufotalin (2a), 3-oxo-cinobufotalin (2b) and 12β-hydroxycinobufotalin (2c). Among them, metabolites 1a, 1c and 2c are new compounds and their structures were characterized on the basis of their spectroscopic data (NMR, MS and IR). Compounds 1, 2, 1b, 2a and 2b were evaluated for their cytotoxicity against HepG2 and MCF-7 human cancer cells, and all of them showed significant inhibitory activities.  相似文献   

4.
Li Y  Zhou Y  Ma Y  Li X 《Carbohydrate research》2011,(13):1714-1720
GlmM and GlmU are key enzymes in the biosynthesis of UDP-N-acetyl-d-glucosamine (UDP-GlcNAc), an essential precursor of peptidoglycan and the rhamnose–GlcNAc linker region in the mycobacterial cell wall. These enzymes are involved in the conversion of two important precursors of UDP-GlcNAc, glucosamine-6-phosphate (GlcN-6-P) and glucosamine-1-phosphate (GlcN-1-P). GlmM converts GlcN-6-P to GlcN-1-P, GlmU is a bifunctional enzyme, whereby GlmU converts GlcN-1-P to GlcNAc-1-P and then catalyzes the formation of UDP-GlcNAc from GlcNAc-1-P and uridine triphosphate. In the present study, methyl 2-amino-2-deoxyl-α-d-glucopyranoside 6-phosphate (), methyl 2-amino-2-deoxyl-β-d-glucopyranoside 6-phosphate (), two analogs of GlcN-6-P, were synthesized as GlmM inhibitors; 2-azido-2-deoxy-α-d-glucopyranosyl phosphate (2) and 2-amino-2,3-dideoxy-3-fluoro-α-d-glucopyranosyl phosphate (3), analogs of GlcN-1-P, were synthesized firstly as GlmU inhibitors. Compounds , , 2, and 3 as possible inhibitors of mycobacterial GlmM and GlmU are reported herein. Compound 3 showed promising inhibitory activities against GlmU, whereas , and 2 were inactive against GlmM and GlmU even at high concentrations.  相似文献   

5.
A novel synthetic pathway to trans-4-amino-1-hydroxy-2-methyl-2-butene (7), a useful synthetic intermediate of zeatin, is presented here. On selective monophthalimide formation, the trans-1, 4-dibromo-2-methyl-2-butene (10) prepared from isoprene (1) predominantly gives trans-1-bromo-2-methyl-4-phthalimido-2-butene (11). The compound (11) is converted to 7 via trans-1-acetoxy-2-methyl-4-phthalimido-2-butene (6). The overall yield of 7 from 1 is 33.6%. Base-catalyzed hydrolysis of 11 also gives 7 directly. Zeatin can be prepared by the condensation of 7 with 6-chloropurine.  相似文献   

6.
Protein tyrosine phosphatase 1B (PTP1B) is an attractive molecular target for anti-diabetes, anti-obesity, and anti-cancer drug development. From the seeds of Silybum marianum, nine flavonolignans, namely, silybins A, B (1, 2), isosilybins A, B (3, 4), silychristins A, B (5, 6), isosilychristin A (7), dehydrosilychristin A (8), and silydianin (11) were identified as a novel class of natural PTP1B inhibitors (IC50 1.3 7–23.87?µM). Analysis of structure–activity relationship suggested that the absolute configurations at C-7" and C-8" greatly affected the PTP1B inhibitory activity. Compounds 15 were demonstrated to be non-competitive inhibitors of PTP1B based on kinetic analyses. Molecular docking simulations resulted that 15 docked into the allosteric site, including α3, α6, and α7 helix of PTP1B. At a concentration inhibiting PTP1B completely, compounds 15 moderately inhibited VHR and SHP-2, and weakly inhibited TCPTP and SHP-1. These results suggested the potentiality of these PTP1B inhibitors as lead compounds for further drug developments.  相似文献   

7.
Reaction of pyridin-2(1H)-one 1 with 4-bromobutylacetate (2), (2-acetoxyethoxy)methyl bromide (3) gave the corresponding nicotinonitrile O-acyclonucleosides, 4 and 5, respectively. Deacetylation of 4 and 5 gave the corresponding deprotected acyclonucleosides 6 and 7, respectively. Treatment of pyridin-2(1H)-one 1 with 1,3-dichloropropan-2-ol (8), epichlorohydrin (10) and allyl bromide (12) gave the corresponding nicotinonitrile O-acyclonucleosides 9, 11, and 13, respectively. Furthermore, reaction of pyridin-2(1H)-one 1 with the propargyl bromide (14) gave the corresponding 2-O-propargyl derivative 15, which was reacted via [3+2] cycloaddition with 4-azidobutyl acetate (16) and [(2-acetoxyethoxy)methyl]azide (17) to give the corresponding 1,2,3-triazole derivatives 18 and 19, respectively. The structures of the new synthesized compounds were characterized by using IR, 1H, 13C NMR spectra, and microanalysis. Selected members of these compounds were screened for antibacterial activity.  相似文献   

8.
Mutilin (4) and deoxy analogues 2 and 3 are biosynthetic precursors of pleuromutilin (1) in the later stage of biosynthesis. Precursors 2 and 3 are required for studies on the oxygenation steps in biosynthesis, and were synthesized from readily available 1 via 4 by deoxygenation of the hydroxy groups. Feeding experiments with the 2H-labeled precursors confirmed their microbial conversion into 1.  相似文献   

9.
Regioselectively fluorinated 1-(naphth-2-ylmethyl)imidazoles 1ah have been synthesized starting from the corresponding (naphth-2-yl)methanols (2). 2ad have been obtained by LiAlH4-promoted reduction of fluorinated 1-methyl-2-naphthaldehydes. The latter were easily prepared in fairly good overall yields by ceric ammonium nitrate (CAN)-promoted oxidative addition of the suitable 3-(fluoroaryl)-1-trimethylsilyloxy-1-butenes to ethyl vinyl ether in methanol followed by cyclization of the resulting acetals in strongly acidic medium in the presence of DDQ. 2eh were prepared by LiAlH4-promoted reduction of the corresponding fluorinated methyl 2-naphthoates. The latter were more profitably obtained by reacting the suitable benzyl bromide with the sodium salt of dimethyl 2-(2,2-dimethoxyethyl)malonate in DMF followed by demethoxycarbonylation and acid catalysed cyclization of the resulting acetals. Compared with the non-fluorinated parent compounds 1il, fluorinated 1-(naphth-2-yl)methylimidazoles 1ah turned out to be potent inhibitors of CYP17 and CYP19 enzymes. The most active inhibitor of CYP17 is 1c, whereas CYP19 is strongly inhibited by 1b, 1e, and 1g. Interestingly, 1g is a potent dual inhibitor also being very active towards CYP19.  相似文献   

10.
The production of erythromycin A (1) and free erythronolide B (2) inSaccharopolyspora erythraea BTCC-2 is accompanied by formation of erythromycin A N-oxide (3) and other minor components, the ratio of yields of1 and3 being 97:3. Erythromycin-blocked mutants of type I (impaired in some unidentified steps prior to lactone synthesis) and type II (accumulating only2) cosynthesized both1 and the accompanying metabolites, but the ratio of1 and3 changed to 70:30. In pure cultures of type I, exogenous2 was converted to1 and minor components in ratios typical of the strain BTCC-2, whereas mutants of type II were effective convertors of1 to3.  相似文献   

11.
Eighteen brominated sponge-derived metabolites and synthetic analogues were analyzed for antilarval settlement of Balanus improvisus. Only compounds exhibiting oxime substituents including bastadin-3 (4), −4 (1), −9 (2), and −16 (3), hemibastadin-1 (6), aplysamine-2 (5), and psammaplin A (10) turned out to inhibit larval settling at 1 to 10 μM. Analogues of hemibastadin-1 (6) were synthesized and tested for structure activity studies. Debromohemibastadin-1 (8) inhibited settling of B. improvisus, albeit at lower concentrations than hemibastadin-1 (6). Both 6 and 8 also induced cyprid mortality. 5,5′-dibromohemibastadin-1 (7) proved to be nontoxic, but settlement inhibition was observed at 10 μM. Tyrosinyltyramine (9), lacking the oxime function, was not antifouling active and was non-toxic at 100 μM. Hemibastadin-1 (6) and the synthetic products showed no general toxicity when tested against brine shrimp larvae. In contrast to the lipophilic psammaplin A (10), the hydrophilic sulfated psammaplin A derivative (11) showed no antifouling activity even though it contains an oxime group. We therefore hypothesize that the compound needs to cross membranes (probably by diffusion) and that the target for psammaplin A lies intracellularly.  相似文献   

12.
Abstract

Synthesis of a new series of quinolinylaminopyrimidines 1ak and quinazolinylmethylaminopyrimidines 2ai containing aminoquinoline and aminoquinazoline as hinge regions is described. Their in vitro antiproliferative activities against A375P human melanoma cell line were tested. Among them, compounds 1h and 1k exhibited the highest antiproliferative activities against A375P cell line with IC50 values in sub-micromolar scale. Compounds 1i, 2b and 2g showed similar potency against A375P to Sorafenib as a reference compound. The representative compound 1h showed high, dose-dependent inhibition of MEK and ERK kinases.  相似文献   

13.
The effect of temperature on enantioselectivity and desymmetrization in the acetylation of 2-phenyl-1,3-propanediol (1a), 2-benzyl-1,3-propanediol (1b), 2-methyl-2-phenyl-1,3-propanediol (1c) and 2-benzyl-2-methyl-1,3-propanediol (1d) by a novel lipase (CSL) isolated from the yeast Cryptococcus spp. S-2 was studied. Desymmetrization of 1a, 1c and 1d by CSL-catalyzed acetylation was observed in the temperature range of ?20°C to 40°C, while diacetylation of 1b occurred considerably even at 0°C. The kinetic parameters of the selectivity indicated that the acetylation of 1a is an entropy controlled process whereas the reaction of 1c and 1d is mainly controlled by the enthalpy term. In the monoacetylation of the diol 1d, the preferred configuration in the enantiomeric induction by CSL was opposite to that of immobilized porcine pancreatic lipase (PPL).  相似文献   

14.
Abstract

Three analogues of Carbovir 1 have been synthesized and evaluated for antiviral activity in vitro. Anti-HIV-1 and anti-HIV-2 activities have been observed with 7-deaza analogues 3 and 5 of 1. Compound 5 was about ten times more potent than 3 against HIV-1 and HIV-2 on different cell lines.  相似文献   

15.
Abstract

Lipophilic phosphodiester L-alaninates of acyclic unsaturated nucleoside analogues 1d, 1e, 2d, 2e, 3d, 3e, 4d and 5d were prepared and their antiretroviral activity was examined in ATH8 cell culture infected with HIV-1. A possible mechanism of action of these analogues is discussed.  相似文献   

16.
Reaction of ethyl 4-thioxo-3,4-dihydropyrimidine-5-carboxylate derivatives 1a,b and ethyl 4-oxo-3,4-dihydropyrimidine-5-carboxylate 1c with 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide in KOH or TEA afforded ethyl 2-aryl-4-(2′,3′,4′,6′-tetra-O-acetyl-β-D-glucopyranosylthio or/ oxy)-6-methylpyrimidine-5-carboxylate 6a-c. The glucosides 6a and 6b were obtained by the reaction of 1a and 1b with peracetylated glucose3 under MW irradiation. Mercuration of 1a followed by reaction with acetobromoglucose gave the same product 6a. The reaction of 1a-c with peracetylated ribose 4 under MW irradiation gave ethyl 2-aryl-4-(2′,3′,5′-tri-O-acetyl-β-D-ribofuranosylthio)-6-methylpyrimidine-5-carboxylate 8a–c. The deprotection of 6a–c and 8a–c in the presence of methanol and TEA/H2O afforded the deprotected products 7a–c and 9a–c. The structure were confirmed by using 1H and 13CNMR spectra. Selected members of these compounds were screened for antimicrobial activity.  相似文献   

17.
Two phenolics, 1,2,6-trigalloylglucose (1) and 1,2,3,6-tetragalloylglucose (2), isolated from the stem-bark of Juglans mandshurica were evaluated for their antioxidative activities. The results showed that compounds 1 and 2 exhibited strong scavenging activities against 1,1′-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis-(3-ethylbenzenthiazoline-6-sulphonic) acid (ABTS?+), and superoxide radicals (O2 ??), and also had a significant inhibitory effect on lipid peroxidation and low-density lipoprotein (LDL) oxidation. The strong superoxide radical scavenging of 1 and 2 resulted from the potential competitive inhibition with xanthine at the active site of xanthine oxidase (OX). In addition, compounds 1 and 2 displayed significant lipoxygenase inhibitory activity, the mode of inhibition also being identified as competitive. In comparison, the antioxidative activities of compounds 1 and 2, together with gallic acid, indicated that the number of galloyl moieties could play an important role in the antioxidative activity.  相似文献   

18.
Summary rac-2-Acetoxy-1,1-dimethyl-1-sila-cyclohexane (rac-2) was synthesized by esterification of rac-1,1-dimethyl-1-sila-cyclohexan-2-ol (rac-1) with acetic anhydride. Enantioselective hydrolysis of rac-2 in aqueous solution, catalysed by a crude lipase preparation of Candida cylindracea (EC 3.1.1.3), led to the formation of (S)-1 (95% ee). Enantioselective transesterification of rac-1 with triacetin in isooctane, catalysed by the same enzyme preparation, yielded (S)-2 (95% ee), which was separated by chromatography from non-reacted (R)-1 (96% ee). Recrystallization led to an improvement of the enantiomeric purity of (R)-1 and (S)-1 up to >98% ee. Thus the enantiomers of rac-1 were prepared (100 mg scale) with high enantiomeric purities by the use of two different types of enzyme-catalysed reaction.  相似文献   

19.
Abstract

Reaction of 2′,3′,5′-O-silylated inosine derivative 1 with 2, 3-O-isopropylidene-5-O-tritylribosyl chloride (3) in a two-phase (CH2Cl2-aq. NaOH) system in the presence of Bu4NBr gave three products, i. e., 6-O-α-, 6-O-β-, and N 1-β-isomers of glycosides 4, 5a, and 5b. A similar PTC reaction of 1 with 2, 3, 5-tri-O-benzylribosyl bromide (9) gave four regio- and stereo-isomers involving the N1-β-glycoside 10. Reaction of 1 with 2, 3, 5-tri-O-benzoylribosyl bromide (11) afforded three products involving the desired N1-β-glycoside 12b, which could be deprotected to give N 1-ribosylinosine (15b) as a useful intermediate for the synthesis of cIDPR.

  相似文献   

20.
Abstract

A number of pyrimido[1, 6-c][1, 3]oxazine and -oxazepine derivatives, mimicry analogs of anti-constrained acyclic thymidine, have been prepared via treatment of lithiated 5, 6-dimethyl-2, 4-dimethoxypyrimidine with benzylchloromethyl ether or oxiran to furnish 2, 4-dimethoxy-6-(1-benzyloxyethyl)-S-methylpyrimidine (2) and 2, 4-dimethoxy-6-(1-hydroxypropyl)-5-methylpyrimidine (8), respectively. Debenzylation of 2 afforded 2, 4-dimethoxy-6-(1-hydroxyethyl)-5-methylpyrimidine (3). Chloromethylation of 3 and 8 with paraformaldehyde and gaseous hydrogen chloride produced reactive chloromethyl ether intermediates which were converted to the cyclized products 9-methyl-(1H, 2H, 4H, 7H)-pyrimido[1, 6-c][1, 3]-oxazine (5) and -oxazepine (9)-6, 8-dione, respectively. By using selenium dioxide, allylic oxidation of 5 and 9 afforded the target compounds, a racemic mixture of (±)1-hydroxy-9-methyl-(1H, 2H, 4H, 7H)-pyrimido[1, 6-c][1, 3]-oxazine (6) and -oxazepine (10)-6, 8-dione, respectively. Compounds 5, 6, 7, 9, and 10 were evaluated for activity against human immunodeficiency virus (HIV), herpes simplex virus type 1 (HSV-1) and human cytomegalovirus (HCMV). All of these compounds were inactive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号