首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了解柯拉斯那(Aquilaria crassna)的化学成分,从其所产沉香中分离得到10个化合物,经波谱分析分别鉴定为:6,8-羟基-2-(2-苯乙基)色酮(1),6,8-二羟基-2-[2-(4-甲氧基苯)乙基]色酮(2),rel-(1a R,2R,3R,7b S)-1a,2,3,7b-tetrahydro-2,3-dihydroxy-5-(2-phenylethyl)-7H-oxireno[f][1]benzopyran-7-one(3),rel-(1a R,2R,3R,7b S)-1a,2,3,7b-tetrahydro-2,3-dihydroxy-[2-(4-methoxyphenyl)-ethyl]-7H-oxireno[f][1]benzopyran-7-one(4),rel-(1a R,2R,3R,7b S)-1a,2,3,7b-tetrahydro-2,3-dihydroxy-5-[2-(3-hydroxy-4-methoxyphenyl)-ethyl]-7H-oxireno[f][1]benzopyran-7-one(5),oxidoagarochromone B(6),oxidoagarochromone C(7),(5S,6R,7S,8R)-2-[2-(3′-hydroxy-4′-methoxyphenyl)ethyl]-5,6,7,8-tetrahydroxy-5,6,7,8-tetrahydrochromone(8),6,7-cis-dihydroxy-2-(2-phenylethyl)-5,6,7,8-tetrahydrochromone(9),N-trans-feruloyltyramine(10)。化合物3~5和8~10为首次从柯拉斯那沉香中分离得到。化合物1,3,6,7,9和10对乙酰胆碱酯酶具有一定的抑制活性,化合物4对人慢性髓原白血病细胞株K-562和人胃癌细胞株SGC-7901均具有较小的抑制作用,化合物1和3对人肝癌细胞株BEL-7402也有抑制活性。  相似文献   

2.
Microwave-assisted synthesis of novel acyclic C-nucleosides of 6-alkyl/aryl-3-(1,2-O-isopropylidene-D-ribo-tetritol-1-yl)[1,2,4]triazolo[3,4-b][1,3,4]thiadiazoles (5–12) and the 6-aryl-thiomethyl analogues 25–27 has been described. Deblocking of 5–12 and 25–27 afforded the free acyclic C-nucleosides 13–20, and 28–30, respectively. All of the synthesized compounds showed no inhibition against HIV-1 and HIV-2 replication in MT-4 cells. However, 6-(3,4-dichlorophenyl)-3-(1,2-O-isopropylidene-D-ribo-tetritol-1-yl)-7H-1,2,4-triazolo[3,4-b][1,3,4]thiadiazole (6) is a potent inhibitor, in vitro, of the replication of HIV-2. These results suggest that compound 6 should be considered as a new lead in the development of antiviral agent.  相似文献   

3.
Deoxyribosyl transferases and functionally related purine nucleoside phosphorylases are used extensively for synthesis of non-natural deoxynucleosides as pharmaceuticals or standards for characterizing and quantitating DNA adducts. Hence exploring the conformational tolerance of the active sites of these enzymes is of considerable practical interest. We have determined the crystal structure at 2.1 Å resolution of Lactobacillus helveticus purine deoxyribosyl transferase (PDT) with the tricyclic purine 8,9-dihydro-9-oxoimidazo[2,1-b]purine (N 2,3-ethenoguanine) at the active site. The active site electron density map was compatible with four orientations, two consistent with sites for deoxyribosylation and two appearing to be unproductive. In accord with the crystal structure, Lactobacillus helveticus PDT glycosylates the 8,9-dihydro-9-oxoimidazo[2,1-b]purine at N7 and N1, with a marked preference for N7. The activity of Lactobacillus helveticus PDT was compared with that of the nucleoside 2′-deoxyribosyltransferase enzymes (DRT Type II) from Lactobacillus leichmannii and Lactobacillus fermentum, which were somewhat more effective in the deoxyribosylation than Lactobacillus helveticus PDT, glycosylating the substrate with product profiles dependent on the pH of the incubation. The purine nucleoside phosphorylase of Escherichia coli, also commonly used in ribosylation of non-natural bases, was an order of magnitude less efficient than the transferase enzymes. Modeling based on published active-site structures as templates suggests that in all cases, an active site Phe is critical in orienting the molecular plane of the purine derivative. Adventitious hydrogen bonding with additional active site residues appears to result in presentation of multiple nucleophilic sites on the periphery of the acceptor base for ribosylation to give a distribution of nucleosides. Chemical glycosylation of O 9-benzylated 8,9-dihydro-9-oxoimidazo[2,1-b]purine also resulted in N7 and N1 ribosylation. Absent from the enzymatic and chemical glycosylations is the natural pattern of N3 ribosylation, verified by comparison of spectroscopic and chromatographic properties with an authentic standard synthesized by an unambiguous route.  相似文献   

4.
Abstract

The syntheses of novel regioisomeric ring-expanded purine nucleosides containing the imidazo[4,5-e][1,2,4]triazepine nucleus are reported. The glycosylation of the heterocycle 3,4,6,7-tetrahydroimidazo[4,5-e][1,2,4]triazepine-5,8-dione (2a) by the stannic chloride procedure gave nucleosides 3 and 4, with the sugar moiety attached at the 7-and 3-positions of the heterocycle, respectively. On the other hand, the mercuric cyanide procedure for glycosylation of 2a yielded nucleosides 4 and 5, with the sugar attached at the 1-position in the latter. In either procedure, 4 was the minor isomer and was obtained only in trace amounts. While debenzoylation of 3 and 5 provided the respective parent nucleosides 8 and 10, that of 4 resulted in ring-opening to produce 9. Attempted enzymic glycosylation of 2a with purine nucleoside phosphorylase failed to yield any nucleoside product.  相似文献   

5.
Abstract

7-Amino-6-substituted-1-(β-D-ribofuranosyl)pyrido [2,3–d]pyrimidine-2,4 (1H, 3H)-diones were prepared in good yields from 5-cyanouridine by application of a novel ring transformation reaction recently developed in our laboratory. Treatment of 3-benzyloxymethyl-2', 3'-O-isopropylidene-5'-O-trityl-5-cyanouridine with malononitrile, cyanoacetamide or ethyl cyanoacetate in base gave directly the pyridopyrimidine nucleosides bearing a CN, CONH2 and CO2 Et at C-6, respectively. The benzyloxymethyl and trityl protecting groups were removed by hydrogenolysis and the isopropylidene group by acid hydrolysis.  相似文献   

6.
The adduct 3-β-D-ribofuranosyl-3,7,8,9-tetrahydropyrimido[1,2-i]purin-8-ol (2), obtained from adenosine and epichlorohydrin, underwent ring fission at basic conditions. The initial ring-opening took place at C2 of the pyrimidine unit resulting in 2-(5-amino-1-β-D-ribofuranosyl-imidazol-4-yl)-1,4,5,6-tetrahydropyrimidin-5-ol (3). Also the tetrahydropyrimidine ring of 3 could be opened resulting in 5-amino-1-(β-D-ribofuranosyl)-imidazole-4-(N-3-amino-2-hydroxyl-propyl)-carboxamide (4). In hot acid conditions, 2 was both deglycosylated and ring-opened yielding 2-(5-amino-imidazol-4-yl)-1,4,5,6-tetrahydropyrimidin-5-ol (7) as the final product. When reacting 3 with CS2 or HNO2 ring-closure took place and 3-β-D-ribofuranosyl-3,4,7,8,9-pentahydropyrimido[1,2-i]purin-8-ol-5-thione (5), and 3-β-D-ribofuranosyl-imidazo[4,5-e]-3,7,8,9-tetrahydropyrimido[1,2-c][1,2,3]triazine-8-ol (6), respectively, were obtained. Also, the pyrimidine ring of the epichlorohydrin adduct with adenine, 10-imino-5,6-dihydro-4H,10H-pyrimido[1,2,3-cd]purin-5-ol (10), underwent ring fission and the product was identified as 3-hydroxy-1,2,3,4-tetrahydroimidazo[1,5-a]pyrimidine-8-carboximidamide (11).  相似文献   

7.
Abstract

Syntheses of 4- and 7-methyl 4, 5, 7, 8-tetrahydro-6H-3-(β-ribofuranosyl)imidazo[4, 5-e] [1, 4]diazepine-5, 8-dione, 3 and 1, respectively, are reported. Single-crystal X-ray diffraction analysis of the aglycon of 3 aided in confirming the site of methylation in 3, and that of 4 in elucidating the solid state conformation of 4. Solution conformations of 3 and 4, along with their parent nucleoside 1 and the latter's 1-glycosyl regioisomer 2, were investigated by NOE and CD measurements.  相似文献   

8.
Abstract

Synthesis of (1S,3R,4R,7R)-7-hydroxy-1-hydroxymethyl-3-(6-N-benzoyl-adenin-9-yl)-2,5-dioxabicyclo[2.2.1]heptane (2), a base-protected xylo-LNA adenine nucleoside, has been accomplished using a convergent synthetic strategy starting from 1,2-di-O-acetylfuranose 3.  相似文献   

9.
Abstract

The fusion reaction between 1-trimethylsilyl-naphth[2,3-d]imidazole (3) and its 2-methyl derivative (4) with 2, 3, 5-tri-O-benzoyl-1-bromo-D-ribofuranose (6) leads to anomeric mixtures of the corresponding 2', 3', 5'-tri-O-benzoyl-1α- and β-D-ribofuranosylnaphth[2,3-d]imidazoles (7, 11 and 13). Separation of the anomers was achieved by chromatographical means and debenzoylation yielded the corresponding nucleosides (8, 12 and 10, 14). Structural proofs are based on elementary analysis, UV- and 1H-NMR spectra.  相似文献   

10.

3-Amino-6-(β-D-ribofuranosyl)imidazo[4,5-c]pyrazole (2) was synthesized via an N-N bond formation strategy by a mononuclear heterocyclic rearrangement (MHR). A series of 5-amino-1-(5-O-tert-butyldimethylsilyl-2,3-O-isopropylidene-β-D-ribofuranosyl-4-(1,2,4-oxadiazol-3-yl)imidaz-oles (6a-d), with different substituents at the 5-position of the 1,2,4-oxadiazole, were synthesized from 5-amino-1-(β-D-ribofuranosyl)imidazole-4-carboxamide (AICA Ribose, 3). It was found that 5-amino-1-(5-O-tert-butyldimethylsilyl-2,3-O-isopropylidene-β-D-ribofuranosyl)-4-(5-methyl-1,2,4-oxadiazol-3-yl)imidazole (6a) underwent the MHR with sodium hydride in DMF or DMSO to afford the corresponding 3-acetamidoimidazo[4,5-c]pyrazole nucleoside(s) (7b and/or 7a) in good yields. A direct removal of the acetyl group from 3-acetamidoimidazo[4,5-c]pyrazoles under numerous conditions was unsuccessful. Subsequent protecting group manipulations afforded the desired 3-amino-6-(β-D-ribofuranosyl)imidazo[4,5-c]pyrazole (2) as a 5:5 fused analog of adenosine (1).  相似文献   

11.
Abstract

The syntheses of 7-amino-3-(β-D-ribofuranosyl)-3H-1,2,3-triazolo[4,5-b]pyridine (8-aza-1-deazaadenosine) (2) and 7-amino-3-(2-deoxy-β-D-erythro-pentofuranosyl)-3H-1,2,3-triazolo[4,5-b]pyridine (2′-deoxy-8-aza-1-deazaadenosine) (3) by glycosylation of the anion of 7-chloro-3H-1,2,3-triazolo[4,5-b]pyridine are described. The anomeric configuration as well as the position of glycosylation were determined by 1H, 13 NMR, UV and N.O.E. difference spectroscopy. The cytotoxicity of these nucleosides against several murine and human tumor cell lines is discussed. Compounds 2 and 3 proved to be good inhibitors of adenosine deaminase.  相似文献   

12.
Abstract

Synthesis of (1R,3R,4S,7R)-7-hydroxy-1-hydroxymethyl-3-(2-N-isobutyroylguanin-9-yl)-2,5-dioxabicyclo[2.2.1]heptane (12), a protected α-L-LNA guanine nucleoside, has been accomplished using a convergent synthetic strategy starting from 1,2-di-O-acetylfuranose 4.  相似文献   

13.
Abstract

Novel pyrimido[1,2-a]pyrimidinones 14, 15 and 16 and imidazo[1,2-a] pyrimidinones 19 and 20, designed as conformationally constrained analogues of 1-(3-amino-2-hydroxypropyl)thymine and 1-(2-amino-3-hydroxypropyl)thymine, respectively, were synthesized by the ring-opening/ ring-closure rearrangement of the corresponding byciclic oxygen-containing amino compounds 12 and 17.  相似文献   

14.
Abstract

(2R,5S)-5-Amino-2-[2-(hydroxymethyl)-1,3-oxathiolan-5-y1]-1,2,4-triazine-3(2H)-one (8) and (2R,5R)-5-amino-2-[2-(hydroxymethyl)-1,3-oxathiolan-5-y1]-1,2,4-triazine-3(2H)-one (9) have been synthesized via a multi-step procedure from 6-azauridine. (2R,5S)-4-Amino-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-y1]-1,3,5-triazine-2(1H)-one (11) and (2R,5R)-4-amino-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-y1]-1,3,5-triazine-2(1H)-one (12), and the fluorosubstituted 3-deazanucleosides (19–24) have been synthesized by the transglycosylation of (2R,5S)-1-{2-[[(tert-butyldiphenylsilyl) oxy]methyl]-1,3-oxathiolan-5-y1} cytosine (2) with silylated 5-azacytosine and the corresponding silylated fluorosubstituted 3-deazacytosines, respectively, in the presence of trimethylsilyl trifluoromethanesulfonate as the catalyst in anhydrous dichloroethane, followed by deprotection of the blocking groups. These compounds were tested in vitro for cytotoxicity against L1210, B16F10, and CCRF-CEM tumor cell lines and for antiviral activity against HIV-1 and HBV.  相似文献   

15.
Abstract

A number of pyrimido[1, 6-c][1, 3]oxazine and -oxazepine derivatives, mimicry analogs of anti-constrained acyclic thymidine, have been prepared via treatment of lithiated 5, 6-dimethyl-2, 4-dimethoxypyrimidine with benzylchloromethyl ether or oxiran to furnish 2, 4-dimethoxy-6-(1-benzyloxyethyl)-S-methylpyrimidine (2) and 2, 4-dimethoxy-6-(1-hydroxypropyl)-5-methylpyrimidine (8), respectively. Debenzylation of 2 afforded 2, 4-dimethoxy-6-(1-hydroxyethyl)-5-methylpyrimidine (3). Chloromethylation of 3 and 8 with paraformaldehyde and gaseous hydrogen chloride produced reactive chloromethyl ether intermediates which were converted to the cyclized products 9-methyl-(1H, 2H, 4H, 7H)-pyrimido[1, 6-c][1, 3]-oxazine (5) and -oxazepine (9)-6, 8-dione, respectively. By using selenium dioxide, allylic oxidation of 5 and 9 afforded the target compounds, a racemic mixture of (±)1-hydroxy-9-methyl-(1H, 2H, 4H, 7H)-pyrimido[1, 6-c][1, 3]-oxazine (6) and -oxazepine (10)-6, 8-dione, respectively. Compounds 5, 6, 7, 9, and 10 were evaluated for activity against human immunodeficiency virus (HIV), herpes simplex virus type 1 (HSV-1) and human cytomegalovirus (HCMV). All of these compounds were inactive.  相似文献   

16.
Electronic parameters of 1′,3 ′-oxygen play significant roles in steering the conformation of nucleoside phosphonic acid analogues. To investigate the relationship of two oxygen atoms with antiviral enhancement, novel 1′,3 ′-dioxolane 5 ′-deoxyphosphonic acid purine analogues were synthesized via de novo acyclic stereoselective route from acrolein and glycolic acid. The synthesized nucleoside phosphonic acid analogues 14 and 19 were subjected to antiviral screening against several viruses, such as HIV-1, HSV-1, HSV-2, and HCMV. The guanine analogue 19 exhibits in vitro anti-HIV-1 activity similar to that of 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA) in MT-4 cells.  相似文献   

17.
In this study, gold electrodes (GE) were coated with conducting polymers to obtain a high photocurrent using cyanobacteria from a novel bioelectrochemical fuel cell. For this purpose, 4-(4H-ditiheno[3,2-b:2',3'-d]pyrol-4-yl) aniline and 5-(4H-dithieno[3,2-b:2',3'-d]pyrol-4-yl) napthtalane-1-amine monomers were coated on GE by performing an electropolymerization process. After that, gold nanoparticles (AuNP) were specifically modified by 2-mercaptoethane sulfonic acid and p-aminothiophenol to attach to the electrode surface. The conducting polymers GE coat was modified with functionalized AuNP using a cross-linker. The resulting electrode structures were characterized by cyclic voltammetry and chronoamperometry under on-off illumination using a fiber optic light source. Cyanobacteria Leptolyngbia sp. was added to the GE/conducting polymer/AuNP electrode surface and stabilized by using a cellulose membrane. During the illumination, water was oxidized by the photosynthesis, and oxygen was released. The released oxygen was electrocatalytically reduced at the cathode surface and a 25 nA/cm 2 photocurrent was observed in GE/ Leptolyngbia sp. After the electrode modifications, a significant improvement in the photocurrent up to 630 nA/cm 2 was achieved.  相似文献   

18.
海南栽培肾茶的化学成分研究   总被引:1,自引:0,他引:1  
为了解肾茶(Clerodendranthus spicatus)的化学成分,从海南栽培肾茶地上部分分离得到11个化合物,经波谱分析分别鉴定为:吐叶醇(1)、丁香脂素(2)、3,4-二羟基苯乙醇(3)、甜橙素(4)、5,6,7,4′-四甲氧基黄酮(5)、5-羟基-6,7,3′,4′-四甲氧基黄酮(6)、6-羟基-5,7,4′-三甲氧基黄酮(7)、5-羟基-6,7,3′,4′-四甲氧基黄烷酮(8)、3,3′,5-三羟基-4′,7-二甲氧基-二氢黄酮(9)、松脂素(10)和熊果酸(11)。化合物3、9和10为首次从肾茶中分离得到。对化合物1~6进行活性测试,结果表明化合物3~5对乙酰胆碱酯酶具有一定的抑制活性。  相似文献   

19.
Abstract

A very efficient synthetic route for preparing a novel 4′-C-aryl branched-1′,2′-seco-2′,3′-dideoxy-2′,3′-didehydro-nucleoside is described. Mesylate 7 was successfully synthesized via a Horner-Wadsworth-Emmons reaction and a [3,3]-sigmatropic rearrangement, with which an adenine base was coupled by nucleophilic substitution conditions (K2CO3, 18-Crown-6, DMF) to give the target nucleoside 9.  相似文献   

20.
The synthesis and pharmacological evaluation of new 3-(imidazol-4(5)-ylmethylene)-2,3-dihydrobenzo[b]furan-2-ones 8-10 and 3-(3,5-dimethylpyrrol-2-ylmethylene)-2,3-dihydrobenzo[b]furan-2-one 11, analogues of SU-5416, as potential inhibitors of angiogenesis, are reported. Compounds 8 and 11 were prepared by a Knoevenagel reaction starting from 2-hydroxyphenylacetic acid 2 and 4-formylimidazole 5 or 2-formyl-3,5-dimethylpyrrole 7, followed by acid-catalysed cyclodehydration. For compounds 9 and 10, an alternative method was used; it consisted in carrying out the Knoevenagel reaction with the 2,3-dihydrobenzo[b]furan-2-ones 3 and 4. The antiangiogenic activity of these compounds was evaluated in the three-dimensional in vitro rat aortic rings test at 1 μM. At this concentration, compound 11 induced a decrease of angiogenesis comparable to that observed with SU-5416; the vascular density index at 1 μM of 11 and SU-5416 were 30±10 and 22±4% of control, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号