首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

In an attempt to introduce a substituent at C-2′ in the “up” arabino configuration directly by nucleophilic displacement reaction of a preformed pyrimidine ribonucleoside, we synthesized 2,5′-anhydro-5′-deoxy-2-thiouridine (6) in three steps from uridine. Compound 6 was converted into the 3′-O-acetyl derivative 7. Upon treatment of 7 with triflyl chloride in methylene chloride in the presence of triethylamine and p-dimethylaminopyridine, 2,2′-anhydro-1-(3-O-acetyl-5-chloro-2,5-dideoxy-β-D-arabinofuranosyl)-2-thiouracil (9) was obtained as the only isolable product. Obviously, the intermediate 3′-O-acetyl-2,5′-anhydro-2′-O-triflyl-2-thiouridine (8) was attacked by the chloride nucleophile at C-5′ first giving the 2′-O-triflyl-2-thiouridine intermediate from which 9 was formed by intramolecular nucleopilic reaction.  相似文献   

2.
Abstract

Treatment of ψ-uridine (3) with α-acetoxyisobutyryl chloride in acetonitrile gave, after deprotection, a mixture of four products: 5-(2-chloro-2-deoxy-β-D-arabinofuranosyl)uracil (10a), its 3′-chloro xylo isomer (11a), 2′-chloro-2′-deoxy-ψ-uridine (9a) and 4,2′-anhydro-ψ-uridine (8a). Each component was isolated by column chromatography. Compound 9 was converted to the known 1,3-dimethyl derivative 2 by treatment with DMF-dimethylacetal. Treatment of 10 and 11 with NaOMe/MeOH afforded the same 4,2′-anhydro-C-nucleoside 8. The 1,3-dimethyl analogues of 10 and 11, however, were converted to 2′,3′-anhydro-1,3-dimethyl-ψ-uridine (13) upon base treatment. The epoxide 13 was also prepared in good yield by treatment of 10 and 11 with DMF-dimethylacetal.  相似文献   

3.
Abstract

3′,5′-Di-O-protected 6-chloropurine arabinoside 4b was treated with diethylaminosulfur trifluoride (DAST) and subsequently deprotected with pyridinium p-toluenesulfonate to give 6-chloropurine 2′-deoxy-2′-fluororiboside 6a. The displacement with nucleophile afforded the 6-substituted congener 6b-e. Treatment of 5′-O-protected 6-chloropurine arabinoside 3c with DAST gave lyxoepoxide 7.  相似文献   

4.
Abstract

A direct and efficient synthesis of 5′-deoxy-2′,3′-O-isopropylideneinosine, 7, from readily available inosine is described. An example of a potentially general synthesis of N -substituted-5′-deoxyadenosines from 7 is also described.  相似文献   

5.
Stereoselective introduction of a phosphate moiety into 2-deoxy-2-fluoroarabinofuranose derivatives at the anomeric position was investigated by two methods. One involved a stereoselective hydrolysis of 1-bromo-derivative, and the consecutive phosphorylation of 2-deoxy-2-fluoro-α-D-arabinofuranose via a phosphoramidite derivative. The other method involved stereoselective α-phosphorylation of the 1-bromo-derivative at the 1-position. The resulting α-1-phosphate was utilized to prepare 2′-deoxy-2′-fluoroarabinofuranosyl purine nucleosides by an enzymatic glycosylation reaction. This chemo-enzymatic method will be applicable to the synthesis of some 2′F-araNs, and three important 2′F-araNs were actually obtained in 30–40% yields from 1,3,5-tri-O-benzoyl-2-deoxy-2-fluoro-α-D-arabinose with high purity.  相似文献   

6.
Abstract

The silylated pyrimidine bases IIa-d were condensed with the benzyl 3,5-di-O-benzyl-2-deoxy-1,4-dithio-d-erythro-pentofuranoside III in acetonitrile under activation by N-iodosuccinimide, giving ca 1.5: 1/α: β anomeric mixtures of the blocked nucleosides IVa-d and Va-d. in yields of 55–58%. After the separation on a silica column the pure anomers were deprotected by BCI3 or TiCI4, providing the free nucleosides VIa-d and VIIa,c,d in moderate to good overall yields. The β- or α-anomeric configuration, anti-glycosidic conformation and prevailing C2′endo(S) thiosugar pucker in the synthesized compounds were established by the combined use of the 1H, 13C NMR and X-ray crystallography.

  相似文献   

7.
Abstract

In order to find the effects of unnatural nucleosides on the stability of duplex, several oligonucleotides containing 1-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)-uracil(FAU),-cytosine (FAC) and -thymine (FMAU) were synthesized by two alternative approaches: phosphoramidite method on an ABI 392 synthesizer and H-phosphonate procedure on our GeneSyn I universal module synthesizer. It was shown from the melting profiles that the presence of FMAU has a large stabilizing effect on the duplex. Replacement of thymidine with FAU, or deoxycytidine with FAC resulted in the formation of less stable duplexes. Temperature-dependent CD spectroscopy demonstrated that the structures of the fluorine containing oligomers are very similar to those of unmodified oligomers.  相似文献   

8.
Abstract

1-α-Methylarabinose was converted, in three steps, to 2-deoxy-2-methyleneribose derivative 3, which was subjected to hydroboration to give 2-α-hydroxymethyl derivative 4 exclusively. 4 was converted to 2,4-bis(hydroxymethyl)ribose derivative 6 in four steps. Mesylation, detritylation, and ring closure, followed by hydrolysis of the mesyl group at O5, gave 3,6-dioxabicyclo[3,2,1]octane derivative 8. After acetylation, 8 was coupled with silylated 6-chloropurine to give desired α- and β-bicyclic-sugar nucleosides.  相似文献   

9.
Abstract

Synthesis of a carbon-bridged cyclouridine,2′-deoxy-6,2′-ethano-cyclouridine, was accomplished starting from a 2′-ketouridine via the 2′-deoxy-2′-iodoethyl-5-chlorouridine derivative through a radical cyclization.  相似文献   

10.
Abstract

The syntheses of 7-amino-3-(β-D-ribofuranosyl)-3H-1,2,3-triazolo[4,5-b]pyridine (8-aza-1-deazaadenosine) (2) and 7-amino-3-(2-deoxy-β-D-erythro-pentofuranosyl)-3H-1,2,3-triazolo[4,5-b]pyridine (2′-deoxy-8-aza-1-deazaadenosine) (3) by glycosylation of the anion of 7-chloro-3H-1,2,3-triazolo[4,5-b]pyridine are described. The anomeric configuration as well as the position of glycosylation were determined by 1H, 13 NMR, UV and N.O.E. difference spectroscopy. The cytotoxicity of these nucleosides against several murine and human tumor cell lines is discussed. Compounds 2 and 3 proved to be good inhibitors of adenosine deaminase.  相似文献   

11.
Abstract

A series of 6- and/or 7-substituted 2,4-quinazoline-dione N-1-deoxyribofuranosides have been synthesized and characterized. The 2′-deoxy-β-D-ribofuranosides 23–28 have been prepared by transformation of the corresponding ribofuranosides by chemical deoxygenation. Direct glycosidation to the β-anomers with a 2′-deoxyribofuranosyl donor to pure anomers failed due to missing diastereoselectivity and difficult separation of the reaction products. The synthesis of the 3′-deoxy-β-D-ribofuranosides 54–58, however, was achieved by glycosidation of the trimethylsilylated 2,4-quinazolinediones 43–47 with an appropriate 3′-deoxyribofuranosyl donor (48). The 2′,3′-dideoxy-β-D-ribofuranosyl derivatives 63–66 were again obtained by chemical deoxygenation of the corresponding 2′-deoxy-β-D-nucleosides, since all experiments of direct glycosidation with a 2′,3′-dideoxyribofuranosyl donor as well as the chemical conversion of the corresponding ribonucleosides into the 2′,3′-dideoxynucleosides failed due to side reactions. The newly synthesized compounds have been identified by UV and 1H-NMR spectra as well as elemental analyses.  相似文献   

12.
Abstract

A stereoselective glycosylation procedure is described for the synthesis of protected α- and β-2′-deoxy-2-thiouridine (dS2U) in 68% and 94% yield, respectively. Evidence is presented that suggests the reaction proceeds through a silylated thio-glycoside intermediate. This intermediate undergoes an efficient S2 → N1 rearrangement mediated by SnCl4. The phosphoramidite and phosphodiester synthons and a dS2U dinucleotide are also synthesized and the X-ray structure of β-dS2U is presented.  相似文献   

13.
Abstract

A synthesis of 9-(2-deoxy-β-D-ribofuranosyl)purine-2-thione was performed by desulfurization of 2′-deoxy-6-thioguanine to give 2-amino-9-(2-deoxy-β-D-ribofuranosyl)purine, diazotization with chloride replacement to give 2-chloro-9-(2-deoxy-β-D-ribofuranosyl)purine, and the replacement of chloride with sulfur using thiolacetic acid and deacetylation.  相似文献   

14.
Abstract

The hitherto unknown title compounds were stereospecifically synthesized by glycosylation of pyrimidine and purine aglycons with a suitably peracylated 3′-deoxy-β-L-erythro-pentofuranose, followed by removal of the protecting groups. All the prepared compounds were tested for their ability to inhibit the replication of a variety of DNA and RNA viruses (including HIV), but they did not show significant antiviral activity.  相似文献   

15.
Abstract

The facile synthesis of several substituted carbohydrates that are amenable for the preparation of 2′,3′-dideoxy-3′-hydroxymethyl nucleosides are reported. Elaboration of a previously reported analog, 5-O-benzoyl-3-deoxy-3-(benzyloxy)methyl-1,2-O-isopropylidene-β-D- ribofuranose (4) has provided two 2,3-dideoxy-3-branched ribose derivatives 5-O-benzoyl-2,3-dideoxy-3-(benzyloxy)methyl-1-O-methyl-β-D-ribofuranose (7) and 1.5-di-O-benzoyl-2,3-dideoxy-3-(benzyloxy)methyl-(α,β)-D-ribofuranose (10). Due to problems involved with the separation of anomeric mixtures when these carbohydrates were condensed with an heterocycle, another versatile synthon 5-O-benzoyl-3-deoxy-3-(benzyloxy)methyl-2-O-t-butyldimethylslyl-1-O- methyl-β-D-ribofuranose (12) was synthesized. The utility of this compound (12) is demonstrated in the total synthesis of 1-[3-deoxy-3-hydroxymethyl-β-D-ribofuranosyl]thymine (20).  相似文献   

16.
Abstract

Synthetic methods for 1-(β-D-arabinofuranosyl) and 1-(2-deoxy-β-D-erythro-pentofuranosyl)thieno[3,2-d]pyrimidine-2,4-diones from the orresponding 1-(β-D-ribofuranosyl) nucleoside have been developed in this report. These compounds were tested against HIV-1 in CEM cl 13 cell cultures, but none of them exhibited significant inhibitory activity against this virus.  相似文献   

17.
Abstract

As an epimerization resistant synthon in the synthesis of oligo-nucleotides consisting of C-nucleoside analogues, hitherto unknown 5-benzyloxy-methyl-3-(2-deoxy-β-D-erythro-pentofuranosyl)pyrrolo[3,2-d]pyrimpyrimidine (7-benzyloxymethyl-2′-deoxy-9-deazaadenosine) was prepared in seven steps from the known 3-amino-2-cyano-4-(2,3-O-isopropylidene-5-O-trityl-β-D-ribofuranosyl)-pyrrolpyrrole (1). Treatment of 1 with benzyl chloromethyl ether in the presence of potassium t-butoxide and 18-crown-6 afforded the N-protected pyrrole 2, which was converted into the 9-deazapurine derivative 3 in high yield by heating in EtOH. 7-Benzyloxymethyl-9-deazaadenosine 4 was obtained from 3 by acid hydrolysis in 2.5% methanolic hydrogen chloride. After protection of the hydroxyl groups of 4 with Markievicz's reagent, the product 5 was converted into the 2′-O-phenoxythiocarbonyl derivative 6. Reduction of 6 with butyltin hydride in the presence of 2,2′-azobis(2-methylpropionitrile), followed by desilylation with triethylammonium fluoride, afforded the desired 7-benzyloxymethyl-2′-deoxy-9-deazaadenosine (8) in high overall yield. The benzyloxymethyl group of 8 was removed by hydrogenolysis over palladium hydroxide (Degussa type) to give 2′-deoxy-9-deazaadenosine (9) in quantitative yield. The structure of 9 is discussed.  相似文献   

18.
Abstract

A synthetic method for (2′S)-2′-C-alkyl-2′-deoxyuridines (9) has been described. Catalytic hydrogenation of 1-[2-C-alkynyl-2-O-methoxalyl-3,5-O-TIPDS-β-D-arabino-pentofuranosyl]uracils (5) gave 1-[2-C-(2-alkyl)-2-O-methoxalyl-3,5-O-TIPDS-β-D-arabino-pentofuranosyl]uracils (4) as a major product, which were then subjected to the radical deoxygenation, affording (2′S)-2′-alkyl-2′-deoxy-3′,5′-O-TIPDS-uridines (7) along with a small amount of their 2′R epimers.

  相似文献   

19.
Novel 2′-deoxy-2′-β-fluoro-threose purine phosphonic acid analogues were designed and racemically synthesized from 2-propanone-1,3-diacetate. Condensation successfully proceeded from a glycosyl donor 9 under Vorbrüggen conditions. Cross-metathesis of vinyl analogues 13 and 23 with diethyl vinylphosphonate yielded the desired nucleoside phosphonate analogues 14 and 24, respectively. Ammonolysis and hydrolysis of phosphonates yielded the nucleoside phosphonic acid analogues 16, 19, 26, and 29. The synthesized nucleoside analogues were subjected to antiviral screening against human immunodeficiency virus (HIV)-1. Adenine analogue 18 exhibited weak in vitro activities against human immunodeficiency virus (HIV)-1.  相似文献   

20.
Abstract

Interesting and very promising antisense properties of 2′-deoxy-2′-fluoroarabinonucleic acids ((a) Wilds, C.J.; Damha, M.J. 2′-Deoxy-2′-fluoroarabinonucleosides and oligonucleotides (2′F-ANA): synthesis and physicochemical studies. Nucl. Acids Res. 2000, 28, 3625–3635; (b) Viazovkina, E.; Mangos, M.; Elzagheid, M.I.; Damha, M.J. Current Protocols in Nucleic Acid Chemistry 2002, 4.15.1–4.15.21) (2′F-ANA) has encouraged our research group to optimize the synthetic procedures for 2′-deoxy-2′-fluoro-β-D-arabinonucleosides (araF-N). The synthesis of araF-U, araF-T, araF-A and araF-C is straightforward, (Tann, C.H.; Brodfuehrer, P.R.; Brundidge, S.P.; Sapino, C., Jr. Howell H.G. Fluorocarbohydrates in synthesis. An efficient synthesis of 1-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)-5-iodouracil (β-FIAU) and 1-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)thymine (β-FMAU). J. Org. Chem. 1985, 50, 3644–3647; Howell, H.G.; Brodfuehrer, P.R.; Brundidge, S.P.; Benigni, D.A.; Sapino, C., Jr. Antiviral nucleosides. A stereospecific, total synthesis of 2′-fluoro-2′-deoxy-β-D-arabinofuranosyl nucleosides. J. Org. Chem. 1988, 53, 85–88; Maruyama, T.; Takamatsu, S.; Kozai, S.; Satoh, Y.; Izana, K. Synthesis of 9-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)adenine bearing a selectively removable protecting group. Chem. Pharm. Bull. 1999, 47, 966–970) however, the synthesis of the guanine analogue is more complicated and affords poor to moderate yields of araF-G (4) ((a) Elzagheid, M.I.; Viazovkina, E.; Masad, M.J. Synthesis of protected 2′-deoxy-2′-fluoro-β-D-arabinonucleosides. Synthesis of 2′-fluoroarabino nucleoside phosphoramidites and their use in the synthesis of 2′F-ANA. Current Protocols in Nucleic Acid Chemistry 2002, 1.7.1–1.7.19; (b) Tennila, T.; Azhayeva, E.; Vepsalainen, J.; Laatikainen, R.; Azhayev, A.; Mikhailopulo, I. Oligonucleotides containing 9-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)-adenine and -guanine: synthesis, hybridization and antisense properties. Nucleosides, Nucleotides and Nucl. Acids 2000, 19, 1861–1884). Here we describe an efficient synthesis of araF-G (4) that involves coupling of 2-deoxy-2-fluoro-3,5-di-O-benzoyl-α-D- arabinofuranosyl bromide (1) with 2-chlorohypoxanthine (2) to afford 2-chloro-β-araF-I (3) in 52% yield. Nucleoside (3) was transformed into araF-G (4) by treatment with methanolic ammonia (150°C, 6 h) in 67% yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号