首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stereoselective synthesis of antiviral synguanol (1) is described. Reaction of 6-benzyloxy-2-(dimethylaminomethyleneamino)purine (10) with ethyl (cis,trans)-2-chloro-2-(chloromethyl) cyclopropane-1-carboxylate (2c) under the conditions of alkylation-elimination gave (Z)-6- benzyloxy-2-formylamino-9-[(2-carbethoxycyclopropylidene)methyl]purine (11) but no E,N9-isomer. Minor amounts of (Z)-6-benzyloxy-2-formylamino-7-[(2-carbethoxy-cyclopropylidene)methyl]purine (13) were also obtained. Hydrolysis of compounds 11 and 13 in 80% acetic acid afforded (Z)-9-[2-(carbethoxycyclopropylidene)methyl]guanine (14) and (Z)-7-[2-(carbethoxy- cyclopropylidene)methyl]guanine (15). Reduction of 14 furnished synguanol (1). Reaction of N4-acetylcytosine (7) with ester 2c led to (Z,E)-1-(2-carbethoxycyclopropropylidenemethyl)cytosine (8, Z/E ratio 6.1:1). Basicity of purine base, lower reactivity of alkylation intermediates as well as interaction of the purine N3 or cytosine O2 atoms with the carbonyl group of ester moiety seem to be essential for the observed high stereoselectivity of the alkylation-elimination. The Z-selectivity is interpreted in terms of E1cB mechanism leading to a transitory “cyclic” cyclopropenes which undergo a cyclopropene-methylenecyclopropane rearrangement.  相似文献   

2.
The enantioselectivity potential of five strains of Saccharomyces cerevisiae was studied for the reduction of ethyl N-{2-{4-[(2-oxocyclohexyl)methyl]phenoxy}ethyl} carbamate (1), an insect juvenile hormone bioanalog. The products of the reaction, the cis and trans isomers of ethyl N-{2-{4-[(2-hydroxycyclohexyl)methyl]phenoxy}ethyl} carbamate (2 and 3), were obtained in 45–49% (w/w) chemical yields and with 79 to > 99% enantiomeric purity values. The absolute configurations of the major products were assigned as ethyl (1S,2S)-N-{2-{4-[(2-hydroxycyclohexyl)methyl]phenoxy}ethyl} carbamate (2) and ethyl (1S,2R)-N-{2-{4-[(2-hydroxycyclohexyl)methyl]phenoxy}ethyl} carbamate (3). The products 2 and 3 belong to the series of the chiral insect juvenile hormone analogs.  相似文献   

3.
Abstract

For two anthracyclinone precursors, 1,4-dihydroxy-2-(1-hydroxy-2,3:4,5-di-0-isopropylidene-D-arabinityl)-9,10-anthraquinone (1) and methyl 2,3-0-isopropylidene-5-(2-quinizarinyl)-α-D-lyxofuranoside (5) prepared by a modification of the Marschalk reaction, single-crystal X-ray analyses indicate that the configurations are both S at the new chiral centres C-1′ and C-5.  相似文献   

4.
Abstract

A number of 6-substituted 7-[(2-hydroxyethoxy)methyl]pyrrolo[2,3-d]pyrimidine and 7-[(1,3-dihydroxy-2-propoxy)methyl]pyrrolo[2,3-d]pyrimidine derivatives related to the nucleoside antibiotics toyocamycin and sangivamycin were prepared and tested for their biological activity. Treatment of 2-amino-5-bromo-3,4-dicyanopyrrole (2) with triethylorthoformate, followed by alkylation via the sodium salt method with either 2-(acetoxyethoxy)methyl bromide or (1,3-diacetoxy-2-propoxy)methyl bromide, furnished the corresponding N-substituted pyrroles 3a and 3b. These compounds were then smoothly converted to the requisite deprotected 4-amino-6-bromopyrrolo[2,3-d]-pyrimidine-5-carbonitriles 5a and 5b (toyocamycin analogs) by methanolic ammonia. The 6-amino-derivatives were obtained by a displacement of the bromo group with liquid ammonia. Conventional functional group transformations involving the 5-cyano group furnished the 5-carboxamide (sangivamycin) and 5-thioamide analogs. Compounds substituted at the 7-position with a ribosyl moiety were active against human cytomegalovirus (HCMV) at micromolar concentrations, but the apparent activity was not selective. The 7-ribosyl compounds also had no activity against human immunodeficiency virus (HIV), though they were all cytotoxic. The new compounds were also evaluated against HCMV, herpes simplex virus type I (HSV-1), HIV, and also for their ability to inhibit the growth of L1210 murine leukemic cells in vitro. None of these compounds with (2-hydroxyethoxy)methyl substituents or 7-(1,3-dihydroxy-2-propoxy)methyl substituent at N-7 showed significant cytotoxicity toward L1210, or toward uninfected human foreskin fibroblasts (HFF cells), and KB cells. Nor were they cytotoxic in human lines CEM or MT2. Only compound 4a was found to be active against HCMV, having an IC50 of 32 μM.  相似文献   

5.
Abstract

The oxidation of methyl 5–0-benzyl-3-deoxy-3-fluoro-α-D-arabi-nofuranoside (1) with DMSO/Ac2o afforded a ~ 2:1 mixture of 2-keto derivatives with erythro and threo configuration resulting from isomerization at C3. Successive treatment of the above mixture with MeONH2, LiA1H4, and S-ethyl trifluoroacetate followed by silica gel chromatography afforded methyl 5–0-benzyl-2, 3-dideoxy-3-fluoro-2-(trifluoroacetamido)-α-D-ribofuranoside (6b) and its lyxo isomer 7b in a total yield of 25% and 5%, respectively. The arabino analogue 25 was prepared from 6b. Compounds 6b, 7b and 25 were converted to the corresponding 5–0-benzoyl derivatives 8a, 9 and 26. A series of 2′-amino-2′, 3′-dideoxy-3′-fluoro-β-D-ribo- and-α-D-lyxofuranosides of natural heterocyclic bases have been synthesized starting from 8a and 9. None of the test compounds had any antiviral activity. 3′-Fluoro-2′-amino-2′, 3′-dideoxycytidine (16) was the only compound showing inhibition of murine L1210 and human Molt/4F cell proliferation (50% effective concentration: 39–42μg/m1).  相似文献   

6.
Abstract

2,3′-Anhydro-2′-deoxy-5′-0-(triphenyl methyl) and 5′-0-(monomethoxytriphenylmethyl) pyrimidine nucleosides of uracil, thymine, and cytosine were synthesized in a single step from their 2′-deoxy-5′-0-(triphenylmethyl) or 5′-0-(monomethoxytriphenylmethyl) precursors using N,N-diethylaminosulfur trifluoride (DAST). The anhydronucleosides were either isolated or directly converted to their respective 2-deoxy-β-D-threo-pentofuranosyl nucleosides using sodium hydroxide in ethanol.  相似文献   

7.
为了解薏苡(Coix lachryma-jobi)糠壳的化学成分,利用多种柱色谱技术对其乙醇提取物乙酸乙酯萃取部位进行分离,经波谱数据分析鉴定了15个化合物,分别为香豆酸(1)、香豆酸甲酯(2)、2-羟乙基-香豆酸酯(3)、咖啡酸甲酯(4)、阿魏酸甲酯(5)、(E)-3-(4-甲氧基苯基)丙烯酸(6)、2,3-二羟基-...  相似文献   

8.
A comparative study of two modifications of enzymic reduction of ethyl N-{2-{4-[(2-oxo-cyclohexyl)methyl]phe- noxy}ethyl} carbamate (1), an insect juvenile hormone bioanalog, was performed using Saccharomyces cerevisiae in two bioreactors of different size, 250-ml shake-flask and 1-l fermenter. The two major products of this reduction were obtained in 45–49% (w/w) yields but with > 99% enantiomeric purity. Their absolute configurations were assigned as ethyl (1S,2S)-N-{2-{4-[(2-hydroxycyclohexyl)methyl]phenoxy}ethyl}carbamate (2a) and ethyl (1R,2S)-N-{2-{4-[(2-hydroxycyclohexyl)methyl]phenoxy}ethyl}carbamate (3a).  相似文献   

9.
Abstract

Continuing our studies on the structure-activity relationships (SAR) of 4-iodo-1-β-D-ribofuranosyl-3-carboxymethyl pyrazole (IPCAR), the ribofuranosyl moiety has been substituted with acyclic chains, namely 1-[(2-hydroxyethoxy)methyl]- and 1-[(1,3-dihydroxy-2-propoxy)methyl]-pyrazole derivatives (4, 5 and 8, 9 respectively), with the 2′-deoxy-β-D-ribofuranosyl group (12 and 13) and finally with the 2′,3′-dideoxy-D-glycero-pentofuranosyl-moiety (16 and 17). None of the new compounds display any interesting biological activity.  相似文献   

10.
Among a library of 70 azoles, 8 indole derivatives substituted in the 2-, 3- or 5- position with an azolylmethyl or α-azolylbenzyl chain were evaluated for retinoic acid (RA) metabolism inhibitory activity. The most active inhibitors identified in this study were 5-bromo-1-ethyl-3-methyl-2-[(phenyl)(1H-1,2,4-triazol-1-yl)methyl]-1H-indole (3) (68.9% inhibition) and 5-bromo-1-ethyl-2-[(4-fluorophenyl)(1H-1,2,4-triazol-1-yl)methyl]-3-methyl-1H-indole (6) (60.4% inhibition). At the same concentration (100 μM) ketoconazole exerted similar inhibitory effect (70% inhibition).  相似文献   

11.
A simple, general scheme for the synthesis of sulfhydryl-specific alkyl alkanethiolsulfonate (RSSO2R) reagents where R is methyl, has been developed. Two new reagents, methyl aminoethanethiolsulfonate (2) and methyl benzylthiolsulfonate (3) were synthesized. These were used to modify stoichiometrically and selectively under mild conditions the sulfhydryl groups ofN-acetyl-l-cysteine ethyl ester (4),N-acetyl-l-cysteinep-nitroanilide (7), glutathione, and the A chain of bovine insulin. The corresponding -S-(-aminoethanethiol) and -S-(benzylthiol) derivatives ofl-cysteine and of the peptides were afforded. The characteristics and significance of these reactions and products are discussed.  相似文献   

12.
Regioselective alkylation of 2-thiouracils 1a–c and 4-thiouracils 7a,b with 2,3-O-isopropylidene-2,3-dihydroxypropyl chloride (2) afforded 2-{[(2,2-Dimethyl-1,3-dioxolan-4-yl) methyl]thio}pyrimidin-4(1H)-ones 3a–c and 4-{[(2,2-Dimethyl-1,3-dioxolan-4-yl)methyl]thio} pyrimidin-2(1H)-ones 8a,b, respectively. Further alkylation with 2 and/or 2,3-O-isopropylidine-1-O-(4-toluenesulfonyl)-glycerol (4) gave the acyclo N-nucleosides 5a–c and 9a,b whose deprotection afforded 6a–c and 10a,b. 2-(Methylthio)pyrimidin-4(1H)-ones 11a–c and 4-(methylthio)pyrimidin-2(1H)-ones 14a,b were treated with 2 and/or 4 to give 12a–c and 15a,b which were deprotected to give 13a–c and 16a,b. Pyrimidine-2,4(1H,3H)-dithiones 17a–c were treated with two equivalents of 2 to give 2,4-bis{[(2,2-dimethyl-1,3-dioxolan-4-yl)methyl]thio}pyrimidines 18a–c. Deprotection of compounds 18a–c gave 2,4-bis[(2,3-dihydroxypropyl)thio]pyrimidines 19a-c. The activity of the deprotected nucleosides against Hepatitis B virus was evaluated and showed moderate inhibition activity against HBV with mild cytotoxicity.  相似文献   

13.
Abstract

A number of pyrimidine acyclic nucleosides in which the acyclic moiety is attached to the C-6 position rather than N-1 of the pyrimidine ring have been prepared. This was accomplished via treatment of lithiated 2,4-dimethoxy-5,6-dimethylpyrimidine, or, 2,4-dimethoxy-6-methylpyrirnidine with 1,3-bis-(benzyloxy)-2-propanone, benzyl chloromethyl ether or oxirane, respectively, to give the corresponding key intermediates 6-[3-benzyloxy-2-[(benzyloxy)methyl]-2-hydroxypropyl]-2,4-dimethoxy-5-methylpyrimidine (2a), 6-[3-Denzyloxy-2-[(benzyloxy)methyl]-2-hydroxypropyl]-2,4-dimethoxypyrimidine(2b), 6-(2-benzyloxyethyl)-2,4-dimethoxy-5-methylpyrimidine (3), and2,4-dunethoxy-6-(3-hydroxypropyl)-5-methylpyrimidine (4a). After acidic hydrolysis, followed by debenzylation with boron trichloride these key intermediates were converted to the target C-6 pyrimidine acyclic derivatives. Compounds 6–8b, 11–13, 15, 16, 20, 22, 26, and 29–32 were evaluated for activity against herpes viruses and human immunodeficiency virus. None of the compounds were active against the viruses nor were they cytotoxic at the highest concentration tested.  相似文献   

14.
Abstract

A group of 1-[(2-hydroxyethoxy)methyl]- (12) and 1-[(1,3-dihydroxy-2-propoxy)methyl]- (13) derivatives of 2,4-difluorobenzene possessing a variety of C-5 substituents (R = Me, H, I, NO2) were designed with the expectation that they may serve as acyclic 5-substituted-2′-deoxyuridine (thymidine) mimics. Compounds 12 and 13 (R = Me, H, I) were inactive as anticancer agents (C50 = 10?3 to 10?4 M range), whereas the 5-nitro compounds (12d, 13d) exhibited weak-to-moderate cytotoxicity (CC50 = 10?5 to 10?6 M range) against a variety of cancer cell lines. All compounds prepared (12a-d, 13a-d) were inactive as antiviral agents in a broad-spectrum antiviral screen that also included the human immunodeficiency virus (HIV-1 and HIV-2) and herpes simplex virus (HSV-1 and HSV-2).  相似文献   

15.
A novel 1,2-cis stereoselective synthesis of protected α-d-Gal-(1→2)-d-Glc fragments was developed. Methyl 2-O-acetyl-3-O-allyl-4,6-O-benzylidene-α-d-galactopyranosyl-(1→2)-3-O-benzoyl-4,6-O-benzylidene-α-d-glucopyranoside (13), methyl 2-O-acetyl-3-O-allyl-4,6-O-benzylidene-α-d-galactopyranosyl-(1→2)-3,4,6-tri-O-benzoyl-α-d-glucopyranoside (15), methyl 2-O-acetyl-3-O-allyl-4,6-O-benzylidene-α-d-galactopyranosyl-(1→2)-3-O-benzoyl-4,6-O-benzylidene-β-d-glucopyranoside (17), and methyl 2-O-acetyl-3-O-allyl-4,6-O-benzylidene-α-d-galactopyranosyl-(1→2)-3,4,6-tri-O-benzoyl-β-d-glucopyranoside (19) were favorably obtained by coupling a new donor, isopropyl 2-O-acetyl-3-O-allyl-4,6-O-benzylidene-1-thio-β-d-galactopyranoside (2), with acceptors, methyl 3-O-benzoyl-4,6-O-benzylidene-α-d-glucopyranoside (4), methyl 3,4,6-tri-O-benzoyl-α-d-glucopyranoside (5), methyl 3-O-benzoyl-4,6-O-benzylidene-β-d-glucopyranoside (8), and methyl 3,4,6-tri-O-benzoyl-β-d-glucopyranoside (12), respectively. By virtue of the concerted 1,2-cis α-directing action induced by the 3-O-allyl and 4,6-O-benzylidene groups in donor 2 with a C-2 acetyl group capable of neighboring-group participation, the couplings were achieved with a high degree of α selectivity. In particular, higher α/β stereoselective galactosylation (5.0:1.0) was noted in the case of the coupling of donor 2 with acceptor 12 having a β-CH3 at C-1 and benzoyl groups at C-4 and C-6.  相似文献   

16.
Abstract

Reverse nucleoside derivatives of 2-(methylsulfanyl)uracils 6a-d were prepared by treating of the sodium salt of 2-(methylsulfanyl)uracils (5a-d) with methyl 2,3-O-isopropylidene-5-O-p-toluenesulfonyl-β-D-ribofuranoside (2). The alkylation of 2-thiouracils 4a-d with methyl 5-deoxy-5-iodo-2,3-O-isopropylidene-D-ribofuranoside (3) afforded the corresponding S-ribofuranoside derivatives 8a-d. Deisopropylidenation of 6a-d and 8a-d afforded the corresponding deprotected derivatives 7a-d and 9a-d, respectively. The Anti-HBV activity of selected compounds was studied.  相似文献   

17.
从红树林树植物瓶花木(Scyphiphora hydrophyllacea Gaertn. f.)的乙醇提取物中分离得到5个化合物,通过波谱分析,鉴定其结构分别为:shanzhigenin methyl ester (1)、1-epishanzhigenin methyl ester (2)、山柰酚 (3)、芹菜素 (4)和 5,7,2'-trihydroxy-3,6,8,4',5'-pentamethoxyflavone (5)。以上化合物均为首次从瓶花木中分离得到。细胞毒活性测试结果表明,化合物12的混合物对人肝癌细胞(SMMC-7721)的增殖有较强的生长抑制活性。  相似文献   

18.
The metabolism of quinones formed in the enzymatic oxidation of veratryl alcohol (3,4-dimethoxybenzyl alcohol) (Ia) and its methyl ether Ib in ligninolytic cultures of Phanerochaete chrysosporium was studied. A metabolite of 2-hydroxymethyl-5-methoxy-2,5-cyclohexadiene-1,4-dione (IIa, formed from Ia by oxidation) was isolated and identified as cis-4-hydroxy-6-hydroxymethyl-3-methoxy-cyclohex-2-en-one (IVa), formally the reduced hydroquinone IIIa. The formation of IVa was also observed when both veratryl alcohol Ia or 2,5-dihydroxy-4-methoxybenzyl alcohol (IIIa), the hydroquinone of IIa, were used as substrates. Analogously, cis-4-hydroxy-3-methoxy-6-methoxymethyl-cyclohex-2-en-one (IVc) was isolated and identified as a metabolite from either 3,4-dimethoxybenzyl methyl ether (Ib) or from its oxidation product 5-methoxy-2-methoxymethyl-2,5-cyclohexadiene-1,4-dione (IIb) as well as from the corresponding hydroquinone 2,5-dihydroxy-4-methoxybenzyl methyl ether (IIIc). The physiological role of these unprecedented conversions is discussed. Correspondence to: H. E. Schoemaker  相似文献   

19.
Abstract

A convenient general method of synthesis of 5′-O-(alkoxycarbonyl)phosphonate esters of 2′,3′-dideoxyribonucleosides is presented, using the 5′-O-(methoxycarbonyl)phosphinyl, 5′-0-(ethoxycarbonyl)phosphinyl, and 5′-O-(cholesterylcarbonyl)phosphinyl derivatives of 3′-azido-3′-deoxythymidine (AZT) and the 5′-0-(ethoxycarbonyl)phosphinyl derivative of 2′,3′-dideoxycytidine (ddC) as examples. Reaction of trimethyl phosphonoformate, methyl phosphonoformate, or dimethyl cholesterylcarbonylphosphonate with phosphorus pentachloride in carbon tetrachloride, followed by direct condensation of the resulting phosphonyl chloride with the nucleoside, gave the fully esterified phosphonoformate derivatives, which on treatment with sodium iodide in tetrahydrofuran underwent selective cleavage of the P-OMe or P-OEt groups, leaving the carboxylate esters intact. The resulting products were converted from sodium salts to ammonium salts by ion-exchange chromatography.  相似文献   

20.
Abstract

The palladium-catalyzed cross-couplings of 2-chloro-3,5-diamino-6-iodopyrazine (1a) and methyl 3-amino-6-iodopyrazine-2-carboxylate (1b) with 1,4-anhydro-3,5-O-bis[(tert-butyl)dimethylsilyl]-2-deoxy-D-erythro-pent-1-enitol (2) followed by desilylation and stereospecific reduction of the 2′-deoxy-3′-keto adduct leads to the formation of 2-chloro-6-(2-deoxy-ß-D-ribofuranosyl)-3,5-diaminopyrazine (4a) and methyl 3-amino-6-(2-deoxy-ß-D-ribofuranosyl)pyrazine-2-carboxylate (4b) in 58% yield and 21% yield, respectively. These are the first syntheses of the heretofore unknown 2′-deoxy pyrazine C-nucleosides and demonstrate the utility of a convergent approach for the synthesis of pyrazine C-nucleosides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号