首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The syntheses and preliminary biological evaluation of several novel pyrrolo[3,2-d]pyrimidine and thieno[3,2-d]pyrimidine C-nucleosides incorporating the arabinofuranosyl or 2′-deoxyribofuranosyl sugar moiety are described. The 2′-deoxy thieno[3,2-d]pyrimidine C-nucleosides (15 and 16) were obtained from 7-(β-D-ribofuranosyl)-4-oxo-3H-thieno[3,2-d]pyrimidine (3) and its 4-SMe derivative 8. “2”-Deoxy-9-deazaadenosine (31), “9-Deaza ara-A” (38) and the 2′-substituted arabinosyl pyrrolo[3,2-d]pyrimidine C-nucleosides (42 - 44) were synthesized from 4-amino-7-(2,3-O-isopropylidene-5-O-trityl-β-D-ribofuranosyl)-5H-pyrrolo[3,2-d]pyrimidine (21)  相似文献   

2.
Abstract

(E) 5-Alkenyl 2′-deoxyuridines were synthesized with moderate to high yields by the palladium catalyzed coupling of alkenyl-zirconium reagents with 0–3′, 5′-his (trimethylsilyl) deoxyuridine in T H F. Some of these 5-alkenyl-dUrd analogues, i.e. the 1-decenyl (5g) and 2- (1-hydroxycyclopentyl) ethenyl (5f) derivatives, inhibited murine L1210 cell growth at a concentration of about 4 μg/ml, whereas the 5-chloro-1-pentenyl (5c), 5-cyano-1-pentenyl (5d), 5-hexyn-1-enyl (5e) and 2-(1-hydroxycyclopentyl) ethenyl (5f) were inhibitory towards herpes simplex and vaccinia virus within the concentration range of 2–60 μg/ml. However, none of the newly synthesized 5-alkenyl-dUrd analogues proved selective in its antiviral action.  相似文献   

3.
Abstract

The title compound 1 is prepared from thymidine 5′-phos-phorodiamidate (2) and inorganic pyrophosphate (3) in anhydrous DMF, at 30–32°C. The products of alkaline hydrolysis of 1, at room temperature, are: thymidine 5′-phosphoramidate (4), thymidine 3′-phosphoramidate (8) and thymidine (9) as well as 3 and inorganic trimetaphosphate (10). In 1 N NH4OH, 1 reacts with cytidine (15) to form cytidylyl-/2T(3′)-5′/-thymidine (16) and a mixture of cytidine 2′,3′-cyclic phosphate (17) and 9.  相似文献   

4.
Abstract

The synthesis of several 5′-substituted derivatives of ribavirin (1) and tiazofurin (3) are described. Direct acylation of 1 with the appropriate acyl chloride in pyridine-DMF gave the corresponding 5′-O-acyl derivatives (4a-h). Tosylation of the 2′, 3′-O-isopropylidene-ribavirin (6) and tiazofurin (11) with p-toluenesulfonyl chloride gave the respective 5′-O-p-tolylsulfonyl derivatives (7a and 12a), which were converted to 5′-azido-5′-deoxy derivatives (7b and 12b) by reacting with sodium/lithium azide. Deisopropylidenation of 7b and 12b, followed by catalytic hydrogenation afforded 1-(5-amino-5-deoxy-β-D)-ribofuranosyl)-1, 2, 4-triazole-3-carboxamide (10b) and 2 - (5 -amino- 5-deoxy- β-D-ribofuranosyl) thiazole-4-carboxamide (16), respectively. Treatment of 6 with phthalimide in the presence of triphenylphosphine and diethyl azodicarboxylate furnished the corresponding 5′-deoxy-5′-phthaloylamino derivative (9). Reaction of 9 with n-butylamine and subsequent deisopropylidenation provided yet another route to 10b. Selective 5′-thioacetylation of 6 and 11 with thiolacetic acid, followed by saponification and deisopropylidenation afforded 5′-deoxy-5′-thio derivatives of 1-β-D-ribofuranosyl-1, 2, 4-triazole-3-carboxamide (8a) and 2-β-D-ribofuranosylthiazole-4-carboxamide (15), respectively.  相似文献   

5.
Abstract

A series of 5′-O-[[[[(alkyl)oxy]carbonyl] amino] sulfonyl] uridines have been synthesized by reaction of cyclohexanol, palmityl alcohol, 1,2-di-O-benzoylpropanetriol and 2,3,4,6-tetra-O-benzoyl-L-glucopyranose with chlorosulfonyl isocyanate and 2,3′-O-isopropylidene-uridine. Another series of 5′-O-(N-ethyl and N-isopropylsulfamoyl) uridines have been prepared by reaction of 2′,3′-O-isopropylidene and 2′,3′-di-O-acetyluridine with N-ethylsulfamoyl and N-isopropylsulfamoyl chlorides. All compounds were tested against HSV-2, VV, SV and ASFV viruses. 2′,3′-Di-O-acetyl-5′-O-(N-ethyl and N-isopropylsulfamoyl) uridine showed significant activities against HSV-2. 5′-O-[[[[(2,3,4,6-Tetra-O-benzoyl-β-L-glucopyranosyl)oxy]carbonyl]amino] sulfonyl]-2′,3′-O-isopropylideneuridine was very active against ASFV.  相似文献   

6.
Abstract

5′-O-[N-(Aminoacyl)sulfamoyl]-uridines and -thymidines 4a-12a and 4b-12b have been synthesized and tested against Herpes Simplex virus type 2 (HSV-2) and as cytostatics. Condensation of 2′,3′-O-isopropylidene-5′-O-sulfamoyluridine and 3′-O-acetyl-5′-O-sulfamoylthymidine with the N-hydroxysuccinimide esters of Boc-L-Ser(Bzl), (2R, 3S)-3-benzyloxycarbonylamino-2-hydroxy-4-phenylbuta-noic acid [(2R, 3S-N-Z-AHPBA], (2R, 3S) and (2S, 3R)-N-Boc-AHPBA gave 4a,b-7a,b, which after removal of the protecting groups provided 1Oa,b-12a,b. A study of the selective removal of the O-Bzl protecting group from the L-Ser derivatives 4a,b, without hydrogenation of the pyrimidine ring, has been carried out. Only the fully protected uridine derivatives 4a-7a did exhibit high anti-HSV-2 activity, and none of the synthesized compounds showed significant cytostatic activity against HeLa cells cultures.  相似文献   

7.
Abstract

2,3′-Anhydro-2′-deoxy-5′-0-(triphenyl methyl) and 5′-0-(monomethoxytriphenylmethyl) pyrimidine nucleosides of uracil, thymine, and cytosine were synthesized in a single step from their 2′-deoxy-5′-0-(triphenylmethyl) or 5′-0-(monomethoxytriphenylmethyl) precursors using N,N-diethylaminosulfur trifluoride (DAST). The anhydronucleosides were either isolated or directly converted to their respective 2-deoxy-β-D-threo-pentofuranosyl nucleosides using sodium hydroxide in ethanol.  相似文献   

8.
Abstract

3′,5′-Di-O-benzoyl-2′-O-(tetrahydropyran-2-yl)uridine and 3′,5′ -di-O-benzoyl-N 2-isobutyryl-2′-O-(tetrahydropyran-2-yl)guanosine are converted into-N 3-anisoyl-2′-O-(tetrahydropyran-2-yl)uridine (less and more polar diastereoisomers in 37% and 42% yields, respectively) and O 6-diphenyl carbamoylN 2-isobutyryl-2′-O-(tetrahydropyran-2-yl)- guanosine (less and more polar diastereoisomers in 15% and 59% yields, respectively), respectively, by N 3-anisoylation and O 6-diphenylcarbamoylation, followed by 3′,5′-di-O-debenzoylation.  相似文献   

9.
Abstract

The molecular conformations of 3′- and 5′-azido and amino derivatives of 5-methoxymethyl-2′-deoxyuridine, 1, were investigated by nmr. The glycosidic conformation of 5-methoxymethyl-5′-amino-2′,5′-dideoxy-uridine, 5 had a considerable population of the syn form. The 5′-derivatives show a preference for the S conformation of the furanose ring as in 1. In contrast, the 3′-derivatives show preference for the N conformation. For 5-methoxymethyl-3′-amino-2′,3′-dideoxyuridine, 3, the shift towards the N state is pH dependent. The preferred conformation for the exocyclic (C4′,C5′) side chain is g+ for all compounds except 5 which has a strong preference for the t rotamer (79%). Compounds 1, 3 and 5 inhibited growth of HSV-1 by 50% at 2, 18 and 70 μg/ml respectively, whereas 2 and 4 were not active up to 256 μg/ml (highest concentration tested). The compounds were not cytotoxic up to 3,000 μM.  相似文献   

10.
Abstract

Photochemical reaction of 2′,3′-di-O- or 2′,3′, 5′-tri-O-protected 5-bromouridine (1), 8-bromoadenosine (4) and 8-bromoguanosine (10) with triethyl phosphite in a mixture of dimethyl formamide (DMF) and acetonitrile, followed by deprotection, provided the corresponding diethyl phosphonate derivatives (3, 7 and 12).  相似文献   

11.
Abstract

A simple procedure is described for the preparation of the title compounds 1, 8 and 9. 3′-3′ or 3′-5′ or 5′-5′ TpT was reacted with a twofold molar excess of TPS in anhydrous DMF, at room temperature, for 5 min, followed by a 1 min in situ treatment of the reaction mixture with excess 7.0 N NH4OH, at 0°C. The alkaline hydrolysis of 1, 8 and 9 proceeds without the assistance of 3′- and 5′-hydroxyl groups resulting in equimolar mixtures of thymidine (4) and thymidine 3′-phosphoramidate (6) (for the 3′-3′ isomer) or thymidine 5′-phosphoramidate (7) (for the 5′-5′ isomer) or 6 and 7 in equal quantities (for the 3′-5′ isomer).  相似文献   

12.
Abstract

Treatment of ψ-uridine (3) with α-acetoxyisobutyryl chloride in acetonitrile gave, after deprotection, a mixture of four products: 5-(2-chloro-2-deoxy-β-D-arabinofuranosyl)uracil (10a), its 3′-chloro xylo isomer (11a), 2′-chloro-2′-deoxy-ψ-uridine (9a) and 4,2′-anhydro-ψ-uridine (8a). Each component was isolated by column chromatography. Compound 9 was converted to the known 1,3-dimethyl derivative 2 by treatment with DMF-dimethylacetal. Treatment of 10 and 11 with NaOMe/MeOH afforded the same 4,2′-anhydro-C-nucleoside 8. The 1,3-dimethyl analogues of 10 and 11, however, were converted to 2′,3′-anhydro-1,3-dimethyl-ψ-uridine (13) upon base treatment. The epoxide 13 was also prepared in good yield by treatment of 10 and 11 with DMF-dimethylacetal.  相似文献   

13.
Abstract

The synthesis of pyrazolo[3,4-d]pyrimidine ribonucleoside 3′, 5′-cyclic phosphates related to cAMP, cIMP and cGMP has been achieved for the first time. Phosphorylation of 4-amino-6-methylthio-1-β-D-ribo-furanosylpyrazolo[3,4-d]pyrimidine (1) with POCl3 in trimethyl phosphate gave the corresponding 5′-phosphate (2a). DCC mediated intramolecular cyclization of 2a gave the corresponding 3′, 5′-cyclic phosphate (3a), which on subsequent dethiation provided the cAMP analog 4-amino-1-β-D-ribofuranosylpyrazolo[3, 4-d]pyrimidine 3′, 5′-cyclic phosphate (3b). A similar phosphorylation of 6-methylthio-1-β-D-ribofuranosylpyrazolo[3, 4-d]pyrimidin-4(5H)-one (5), followed by cyclization with DCC gave the 3′, 5′-cyclic phosphate of 5 (9a). Dethiation of 9a with Raney nickel gave the cIMP analog 1-β-D-ribofuranosylpyrazolo[3, 4-d]pyrimidin-4(5H)-one 3′, 5′-cyclic phosphate (9b). Oxidation of 9a with m-chloroperoxy benzoic acid, followed by ammonolysis provided the cGMP analog 6-amino-1-β-D-ribofuranosylpyrazolo [3, 4-d] pyrimidin-4(5H)-one 3′, 5′-cyclic phosphate (7). The structural assignment of these cyclic nucleotides was made by UV and H NMR spectroscopic studies.  相似文献   

14.
An improved synthesis of N2‐protected‐3′‐azido‐2′,3′‐dideoxyguanosine 20 and 23 is described. Deoxygenation of 2′‐O‐alkyl (and/or aryl) sulfonyl‐5′‐dimethoxytritylguanosine coupled with [1,2]‐hydride shift rearrangement gave protected 9‐(2‐deoxy‐threo‐pentofuranosyl)guanines ( 10 , 12 and 16 ). This rearrangement was accomplished in high yield with a high degree of stereoselectivity using lithium triisobutylborohydride (l‐Selectride®). Compounds 10 , 12 and 16 were transformed into 3′‐O‐mesylates ( 18 and 21 ), which can be used for 3′‐substitution. The 3′‐azido nucleosides were obtained by treatment of 18 and 21 with lithium azide. This procedure is reproducible with a good overall yield.  相似文献   

15.
Abstract

New routes to the preparations of 2′-deoxy-3′-C-methyl uridine (2c) and 1-(5′-0-trityl-3′-deoxy-β-D-glycero-pentofuran-2-ulosyl)uracil (4) from 5′-0-trityl-2′-0-tosyl uridine (1) and 5′-0-trityl-3′-0-tosyl uridine (3) respectively are described.  相似文献   

16.
Abstract

Application of previously described methodologies, for the synthesis of 2′,3′-dideoxy-2′,3′-didehydro nucleosides from the parent ribonucleosides, to the antibiotics tubercidin (1), toyocamycin (6) and sangivamycin (10) has provided the corresponding 2′,3′-unsaturated nucleosides 4, 9, and 13. A reduction of the 2′,3′-unsaturated moiety has afforded the 2′,3′-dideoxynucleoside antibiotics 5, 14, and 15.  相似文献   

17.
Abstract

Reaction of 3′-0-(t-butyldimethylsilyl)-2′-deoxythymidine-5′-carboxaldehyde and 2′,3′-dideoxythymidine-5′-carboxaldehyde with acetone afforded a 3:2 mixture of the two (5′R)- and (5′S)-5′-acetonylthymidine derivatives.  相似文献   

18.
Abstract

2′-O-Methyl-5-methoxycarbonylmethyluridine (1) was synthesized via N3, 5′, 3′-O-protected intermediate 6. Nucleoside 1 was transformed to the next “wobble uridines”, 2 and 3, by hydrolysis and ammonolysis, respectively.  相似文献   

19.
Abstract

A synthesis of 1-(2,3-dideoxy-β-D-ribofuranosyl)-1,2,4-triazole-3-carboxamide (2′,3′-dideoxyribavirin, ddR) is described. Glycosylation of the sodium salt of 1,2,4-triazole-3-carbonitrile (5) with 1-chloro-2-deoxy-3,5-di-0-p-toluoyl-α-D-erythro-pentofuranose (1) gave exclusively the corresponding N-1 glycosyl derivative with β-anomeric configuration (6), which on ammonolysis provided a convenient synthesis of 2′-deoxyribavirin (7). Similar glycosylation of the sodium salt of methyl 1,2,4-triazole-3-carboxylate (2) with 1 gave a mixture of corresponding N-1 and N-2 glycosyl derivatives (3) and (4), respectively. Ammonolysis of 3 furnished yet another route to 7. A four-step deoxygenation procedure using imidazolylthiocarbonylation of the 3′-hydroxy group of 5′-0-toluoyl derivative (9a) gave ddR (11). The structure of 11 was proven by single crystal X-ray studies. In a preliminary in vitro study ddR was found to be inactive against HIV retrovirus.  相似文献   

20.
Abstract

The synthesis of the title compound was performed using a 3′-O-(tetrahydropyran-2-yl) adenosine derivative as the starting material, i.e., a coupling reaction of triethylammonium N 6-benzoyl-5′-O-dimethoxytrityl-3′-O-(tetrahydropyran-2-yl) adenosine 2′-(4-chlorophenyl)phosphate with N 6-benzoyl-2′,3′-di-O-benzoyladenosine, followed by a sequence of reactions, O-dedimethoxytritylation, a coupling reaction with the former triethylammonium salt, and complete deblocking of the resultant 2′, 5′-triadenylic acid derivative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号