首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluorescein-labeled oligonucleotides as DNA-probes were synthesized and used to monitor hybrid formation, namely to detect DNA or oligonucleotide sequence in solution. The introduction of fluorescein to oligonucleotides was carried out by oxidation of a hydrogen phosphonate linkage with ethylenediamine or hexamethylenediamine as a tether and by a subsequent labeling of the primary amine moiety by FITC. Fluorescence anisotropy, r, was adopted as an index to monitor the behavior of F-probe in solution. An increase in the anisotropy was observed upon an increase in the chain-length of F-probe. When F-Probe formed a hybrid with its complementary oligonucleotide in solution, the r value increased compared to that of F-Probe itself. These observations clearly indicate that measurements of r in solution will readily lead to the monitoring of the presence of a hybrid in solution. Consequently, it is promising to detect a certain nucleic acid sequence in solution using fluorescent-labeled oligonucleotides.  相似文献   

2.
Ethylene glycol oligomers have been studied systematically as non-nucleotide loop replacements in short hairpin oligoribonucleotides. Structural optimization concerns the length of the linkers and is based on the thermodynamic stabilities of the corresponding duplexes. The optimum linker is derived from heptakis (ethylene glycol) provided that the duplex end to be bridged comprises solely the terminal base pair; the optimum linker is derived from hexakis(ethylene glycol) if a dangling unpaired nucleotide is incorporated into the loop. Moreover, these linkers have been compared to other commonly used linker types which consist of repeating units of tris- or tetrakis(ethylene glycol) phosphate, or of 3-hydroxypropane-1-phosphate. In all cases, the correlation between linker length and duplex stability is independent of the kind of counter ions used (Na+, Na+/Mg2+, K+ or Li+). Furthermore, all duplexes with non-nucleotide loop replacements are less stable than those with the corresponding standard nucleotide loop. The results corroborate that the linkers are solvent-exposed and do not specifically interfere with the terminal nucleotides at the bridged duplex end.  相似文献   

3.
Synthetic study on cystinyl peptides using solution and solid phase methodology was carried out with the central hinge region of immunoglobulin IgG1. In the solid phase synthesis of hexadecapeptide 1c, the time necessary for the formation of disulfide bonds between linear precursors was shortened four times by the action of pure oxygen in buffered solution, in comparison with air oxidation. The product was thus obtained devoid of impurities from side reactions. In the preparation of the shortened bis-cystinyl analogs 2k and 3d of the natural hexadecapeptide 1c, both the classical and polyethylene glycol (PEG6000) solution methods were utilized using a disulfide synthon (Boc-Cys-OPfp)2 to obtain peptide chains in a natural parallel alignment. In the PEG6000 strategy, lysine as a linker on both sides of the polymer was attached to enhance the loading capacity. The leucine residue, instead of proline one, was introduced to the carboxy terminus to facilitate a specific enzymatic cleavage of the peptides from PEG6000 by thermolysine.  相似文献   

4.
BackgroundIn protein crystals, flexible loops are frequently deformed by crystal contacts, whereas in solution, the large motions result in the poor convergence of such flexible loops in NMR structure determinations. We need an experimental technique to characterize the structural and dynamic properties of intrinsically flexible loops of protein molecules.MethodsWe designed an intended crystal contact-free space (CCFS) in protein crystals, and arranged the flexible loop of interest in the CCFS. The yeast Tim 21 protein was chosen as the model protein, because one of the loops (loop 2) is distorted by crystal contacts in the conventional crystal.ResultsYeast Tim21 was fused to the MBP protein by a rigid α-helical linker. The space created between the two proteins was used as the CCFS. The linker length provides adjustable freedom to arrange loop 2 in the CCFS. We re-determined the NMR structure of yeast Tim21, and conducted MD simulations for comparison. Multidimensional scaling was used to visualize the conformational similarity of loop 2. We found that the crystal contact-free conformation of loop 2 is located close to the center of the ensembles of the loop 2 conformations in the NMR and MD structures.ConclusionsLoop 2 of yeast Tim21 in the CCFS adopts a representative, dominant conformation in solution.General significanceNo single powerful technique is available for the characterization of flexible structures in protein molecules. NMR analyses and MD simulations provide useful, but incomplete information. CCFS crystallography offers a third route to this goal.  相似文献   

5.
Abstract

The optical anisotropy of chromatin with different length of the linker DNA isolated from a variety of sources (Frend erythroleukemia cells, calf thymus, hen erythrocytes and sea urchin sperm) has been studied in a large range of mono- and bivalent cations concentraitons by the use of flow linear dichroism (LD) and electric dichroism.

We have found that all chromatins studied displayed negative LD values in the range of 0.25 mM EDTA—2 mM NaCl and close positive values in the range of 2–100 mM NaCl. Mg2+ cations, in contrast to Na+ cations, induce optically isotropic chromatin fibers. All chromatin samples exhibit positive form effect amounting to 5–10% of LD amplitude observed at 260 nm. This form effect is determined by the anisotropic scattering of polarized light by single chromatin fibers.

The conformational transition at 2 mM NaCl leads to the distortion of chromatin filament structure. The reversibility of this distortion depends on the length of the linker DNA—for chromatins with the linker DNA of 10–30 b.p. it is parially reversible, while for preparations with longer linker DNA it is irreversible.

Relatively low electric field does not affect chromatin structure, while higher electric field (more than 7 kV/cm) distorts the structure of chromatin.

Presented resutls explain the contradictory data obtained by electrooptical and hydrooptical methods.  相似文献   

6.
Abstract

Thymidine dimers with extended carbamate and urea linkages were synthesized. The length of the linker is expected to increase flexibility and improve duplex formation after incorporation into oligomer.

  相似文献   

7.
Abstract

The transient secondary structure and dynamics of an intrinsically unstructured linker domain from the 70 kDa subunit of human replication protein A was investigated using solution state NMR. Stable secondary structure, inferred from large secondary chemical shifts, was observed for a segment of the intrinsically unstructured linker domain when it is attached to an N-terminal protein interaction domain. Results from NMR relaxation experiments showed the rotational diffusion for this segment of the intrinsically unstructured linker domain to be correlated with the N-terminal protein interaction domain. When the N-terminal domain is removed, the stable secondary structure is lost and faster rotational diffusion is observed. The large secondary chemical shifts were used to calculate phi and psidihedral angles and these dihedral angles were used to build a backbone structural model. Restrained molecular dynamics were performed on this new structure using the chemical shift based dihedral angles and a single NOE distance as restraints. In the resulting family of structures a large, solvent exposed loop was observed for the segment of the intrinsically unstructured linker domain that had large secondary chemical shifts.  相似文献   

8.
Bis-Netropsins with the C-ends of their netropsin fragments tethered via tetra- or pentamethylene linkers and with Gly or L-Lys-Gly residues on their N-ends were synthesized. The footprinting technique was used to study the specificity of bis-netropsin binding to the specially constructed DNA fragments containing various clusters of A · T pairs. It was found that the linker length affects the binding of bis-netropsins, with the tetramethylene linker providing better protection than the pentamethylene linker. It was shown that the newly synthesized bis-netropsins bind tighter to the 5"-A 4 T 4-3" sequence, whereas the bis-netropsin with a linker between the netropsin N-ends binds better to 5"-T 4 A 4-3" sequences.  相似文献   

9.
Abstract

Incorporation of an azobenzene-4,4′-diamide group via a linker arm into the 3′-hydroxyl function of one oligonucleotide segment and the 5′-OH of other oligonucleotide has been described. The binding of the oligonucleotides containing the azobenzene linker was investigated by UV melting behaviors. The azobenzene linker has been shown to be useful as an effective bridge for stabilizing hairpin duplex and triplex.  相似文献   

10.
Silversmith RE 《Biochemistry》2005,44(21):7768-7776
In Escherichia coli chemotaxis, the CheZ phosphatase catalyzes the removal of the phosphoryl group from the signaling molecule, CheY. The cocrystal structure of CheZ with CheY x BeF3- x Mg2+ (a stable analogue of CheY-P) revealed that CheZ is a homodimer with a multidomain, nonglobular structure. To explore the effects of CheZ/CheY complex formation on CheZ structure, the rotational dynamics of the different structural domains of CheZ [the four-helix bundle, the N-terminal helix, the C-terminal helix, and the putative disordered linker between the C-terminal helix and the bundle] were evaluated. To monitor dynamics of the different regions, fluorescein probes were covalently attached at various locations on CheZ through reaction with engineered cysteine residues and the rotational behavior of the fluoresceinated derivatives were assessed using steady state fluorescence anisotropy. Anisotropy measurements at various solution viscosities (Perrin plot analysis) demonstrated large differences in global rotational motion for fluorophores located on different regions. Rotational correlation times for probes located on the four-helix bundle and the N-terminal helix agreed well with theoretical values predicted for a protein the size and shape of the four-helix bundle. However, the rotational correlation times of probes located on the linker and the C-terminal helix were 8-20x lower, indicating rapid motion independent of the bundle. The anisotropies of probes located on the linker and the C-terminal helix increased in the presence of divalent cation (Mg2+, Ca2+, or Mn2+) in a saturable fashion, consistent with a binding event (Kd approximately 1-4 mM) that results in decreased mobility. The anisotropies of probes located on the C-terminal helix and the C-terminal portion of the linker increased further as a result of binding CheY-P. In light of the recently available structural data and the high independent mobility of the C-terminus demonstrated here, we interpret the CheY-P-dependent increase in anisotropy to be a consequence of decreased mobility of the C-terminal region due to binding interactions with CheY-P, and not to the formation of higher order aggregates of the CheZ2(CheY-P)2 complex.  相似文献   

11.
A comparative study is presented on the solid-phase peptide synthesis (SPPS) of the acyl carrier protein (ACP 65–74) sequence on a series of Rink amide resins possessing different matrix structures: poly(vinyl alcohol)-graft-poly(ethylene glycol) (PVA-g-PEG, 4), Tentagel-S-RAM (TG, 5), NovaGel (NG, 6), ChemMatrix (CM, 7) and polystyrene-divinylbenzene (PS-DVB, 8). In this comparison, the PEG-containing resins proved significantly better suited for the synthesis of pure ACP target sequence than the conventional PS-DVB solid supports (75–90% versus 52% crude purity). Amongst themselves, the PEG resins 4-7 exhibited similar capacity for providing pure peptide. Selecting PVA-g-PEG resin for a comparison of Rink amide linker versus no linker, the ACP (65–74) sequence was synthesized directly on the PVA-g-PEG resin 1, under identical conditions as employed in the synthesis on resin 4 bearing the Fmoc Rink linker, except for the final cleavage step, which was performed under more environmentally sound conditions using ester displacement with aqueous ammonia. Relative to its Rink amide counterpart 4, PVA-g-PEG resin 1 was cheaper to produce and possessed twice as much loading capacity (0.48 vs. 0.81 mmol/g). Moreover, Rink-less resin 1 gave higher yields of isolated pure peptide (61 vs. 45%) relative to its Fmoc Rink linker counterpart 4. In light of these results, the importance of the linker has been brought into question. As the need for large scale solid-phase peptide synthesis grows with greater demand for peptide products, ideal resins should be inexpensive to produce and employable under environmentally sound conditions to provide pure products. In this light, PVA-g-PEG resin 1 has demonstrated significant promise for economic and “green” SPPS.  相似文献   

12.
Abstract

We have recently described a method to prepare combinatorial chemistry libraries by solution phase simultaneous addition of functionalities (SPSAF).1–2 SPSAF has been used to create libraries based on the purine heterocycle. The nucleophilic sites (secondary nitrogens) in the planer heteroaromatic purine scaffold were built in via linkers. Thus, to continue the use of electophilic functionalities, as in previous libraries, a bifunctional nucleophilic linker was required. Piperazines readily served this purpose. Nucleophilic displacement of the chloro groups on 2,6-dichloropurine with piperazines provides reactive, constrained secondary amines for combinatorialization (Figure 1, 1). An additional piperazine was placed in the 9-position by alkylation of 2,6-dipiperazinylpurine. In this manner, the functionality that differentiates each pool (sublibrary) could be placed last in the synthetic scheme (fix last concept).1  相似文献   

13.
Abstract

A uridine-based linker immobilized onto polystyrene beads at the 5′ terminus via a phosphodiester group and then used as a universal DNA synthesis support gives post synthesis DNA cleavage in 8 hrs or less without alkali metal salts. DNA produced with the new support was analyzed by HPLC, MALDI mass spectroscopy and PAGE. Each analysis showed DNA of equivalent quality to that produced with standard CPG supports, without contaminating materials resulting from linker or support backbone decomposition.  相似文献   

14.
A new labeling technique attaching a fluorescent pteridine derivative (3, 5) via a linker onto the 3′-OH group of 5′-O-dimethoxytritylthymidine (7) was developed to lead to the conjugates 8 and 11. After detritylation to give 9 and 12, the final conversion into the corresponding 5′-triphosphates (13, 14), which were isolated as sodium salts, was performed by known methods.  相似文献   

15.
A benzo[f]imidazo[1,5b]-isoquinoline derivative 4 with a 1,2-butandiol linker was prepared by reaction of a trimethylsilylated 5-naphthylidenehydantoin 3 with a 2,3-dideoxy-D-glycero-pentafuranoside 2 in 22% yield. After deprotection, the resulting compound 5 was converted to a DMT protected phosphoramidite building block 7 for standard DNA synthesis. DNA/DNA, DNA/RNA duplexes with 5 inserted as bulges were destabilized, except when the new amidite was used for the synthesis of a zipping duplex.  相似文献   

16.
BackgroundPrevious studies found that Vitamin E (VE) could recruit protein kinase B (Akt1) to the membrane by targeting its unconventional lipid-binding site, which led to the dephosphorylation of Akt1 at Ser473, eventually deactivating the enzyme.MethodsA series of VE-like compounds with varying types and lengths of the linker groups are designed to study the VE-driven membrane recruitment of Akt1 using a combined molecular docking and molecular dynamics (MD) simulation approach.ResultsWe find that the linker groups with only one methylene linker and multiple hydrogen bond donors are optimal for achieving a balance between binding to the protein and partitioning into the membrane to form a stable protein-ligand-membrane ternary complex. These polar linkers are found to form stable hydrogen bonds with the lipid head groups during the MD simulations, which turns out critical for ensuring that the chromanol ring of the VE-like compounds resides above the membrane surface to fully engage in the protein.ConclusionsOur results reveal the molecular determinants of the linker groups for VE derivatives' ability to anchor Akt1 to the membrane.General significanceThese findings will facilitate the design of membrane interfacial compounds to recruit specific proteins to the membrane to modulate the protein function.  相似文献   

17.
BackgroundThe Hsp70 proteins maintain proteome integrity through the capacity of their nucleotide- and substrate-binding domains (NBD and SBD) to allosterically regulate substrate affinity in a nucleotide-dependent manner. Crystallographic studies showed that Hsp70 allostery relies on formation of contacts between ATP-bound NBD and an interdomain linker, accompanied by SBD subdomains docking onto distinct sites of the NBD leading to substrate release. However, the mechanics of ATP-induced SBD subdomains detachment is largely unknown.MethodsHere, we investigated the structural and allosteric properties of human HSPA1A using hydrogen/deuterium exchange mass spectrometry, ATPase assays, surface plasmon resonance and fluorescence polarization-based substrate binding assays.ResultsAnalysis of HSPA1A proteins bearing mutations at the interface of SBD subdomains close to the interdomain linker (amino acids L399, L510, I515, and D529) revealed that this region forms a folding unit stabilizing the structure of both SBD subdomains in the nucleotide-free state. The introduced mutations modulate HSPA1A allostery as they localize to the NBD-SBD interfaces in the ATP-bound protein.ConclusionsThese findings show that residues forming the hydrophobic structural unit stabilizing the SBD structure are relocated during ATP-activated detachment of the SBD subdomains to different NBD-SBD docking interfaces enabling HSPA1A allostery.General significanceMutation-induced perturbations tuned HSPA1A sensitivity to peptide/protein substrates and to Hsp40 in a way that is common for other Hsp70 proteins. Our results provide an insight into structural rearrangements in the SBD of Hsp70 proteins and highlight HSPA1A-specific allostery features, which is a prerequisite for selective targeting in Hsp-related pathologies.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号