首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Reactjon of (2-acetoxyethoxy)methyl bromide with the silylated lumazine bases (1-6) in the presence of n-Bu4NI leads to the formation of the nucleosides 8, 10, 12, 14, 16 and 18 respectively. Deacetylation with methanolic ammonia afforded the free nucleosides 9, 11, 13, 15, 17 and 19, respectively, in good yields. Structural proofs of the newly synthesized compounds are based on elemental analyses, UV and 1H-NMR spactra. None of the acyclic nucleosides exhibited antiviral activity against HSV-1 in vitro.  相似文献   

2.
Abstract

Several 6- and 7-substituted quinazoline-2, 4-(1H, 3H)-diones (1–7) have been ribosylated with 1-0-acetyl-–2, 3, 5-tri-0-benzoyl-β-D-ribofuranose (8)via the “silyl”-method and Lewis acid catalysis in a highly regioselective manner to give the corresponding protected N-1 ribosides 9–15. Debenzoylation to the free nucleosides 16–22 was achieved by sodium methoxide. Thiation of 9–15 by Lawesson's reagent effected the conversion of the 4-oxo into the 4-thioxo function (23–29). Removal of the sugar protecting groups in these derivatives worked best with potassium carbonate in anhydrous MeOH to form in high yields 30–35. Treatment of the peracylated 4-thioxo quinazoline nucleosides with methanolic ammonia resulted in deacylation of the sugar moiety and in displacement of the sulfur function to give the corresponding 4-amino-1-β-D-ribofuranosylquinazolin-2(1H)-ones 36–41. The newly synthesized, nucleosides have been characterized by elemental analysis, UV- and 1H-NMR-spectra.  相似文献   

3.
Abstract

The fusion reaction between 1-trimethylsilyl-naphth[2,3-d]imidazole (3) and its 2-methyl derivative (4) with 2, 3, 5-tri-O-benzoyl-1-bromo-D-ribofuranose (6) leads to anomeric mixtures of the corresponding 2', 3', 5'-tri-O-benzoyl-1α- and β-D-ribofuranosylnaphth[2,3-d]imidazoles (7, 11 and 13). Separation of the anomers was achieved by chromatographical means and debenzoylation yielded the corresponding nucleosides (8, 12 and 10, 14). Structural proofs are based on elementary analysis, UV- and 1H-NMR spectra.  相似文献   

4.
Abstract

The attempted ribosylation reaction of 8-nitro-theophylline (2) with 1-o-acetyl-2, 3, 5-tri-o-benzoyl-D-ribo-furanose (5) failed to give any nucleoside product, whereas the reaction of 8-chlorotheophylline (3) with 5 afforded the 8-chloro-7-(2,3,5-tri-o-benzoyl) β-D-ribofuranosyltheophylline (6) in good yield. The product 6 reacted with benzylamine producing the 8-benzylamino-7-(2, 3, 5-tri-O-benzoyl) β-D-ribo-furanosyltheophylline (10), which could also be synthesised by ribosylation of 8-benzylaminotheophylline (8) with 5. Debenzoylation of 6 and 10 gave the corresponding 7-β-D-ribofuranosyltheophylline nucleosides (7) and (11), respectively. Compound 7 could be converted into 11 by reaction with benzylamine. The newly synthesised compounds have been characterised by elemental analysis, 1H-NMR and UV spectra.  相似文献   

5.
Abstract

Various new haloindazole-1-β-D-ribofuranosides (10-17,20,21) and a 2-β-D-ribofuranoside (18) have been synthesized by the fusion method and by direct halogenations, respectively. The new nucleosides have been characterized by UV and 1H NMR spectra as well as pKa determinations. Indazole ribofuranosides behave in aqueous acid like purine and benzimidazole nucleosides showing the same mechanism of cleavage of the glycosidic bonds. Toxicity studies against various cell populations indicate only little biological activities.  相似文献   

6.
Abstract

The chemical syntheses of 1-(2,3,4,6-tetra-0-acety]-5-thio-β-D-glucopyranosyl)-6-azauracil (4) and the 5-bromo analogue 6 are described. Deblocking of 4 and 6 with sodium methoxide afforded the free nucleosides 5 and 7, respetively. Treatment of 6 with benzylmercaptan in basic medium led to the formation of 6-benzylthio-1-((2,3,4,6-tetra-0-acetyl-5-thio-β-D-glucopyranosyl)-6-azauracil (8), in good yield, which was deblocked to 9 on treatment with sodium methoxide. Reaction of 6 with benzlamine gave 5-benzylamino-1-(5-thio-β-D-glucopyranosyl)-6-azauracil (10).  相似文献   

7.
Abstract

The fusion reaction between 2-trifluoromethylnaphth[2,3-d]imidazole (1) and 1-0-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose (2) leads to 2,3′,5′-tri-O-benzoyl-1-β-D-ribofuranosylnaphth[2,3-d]imidazole (3). Debenzoylation of (3) gives the corresponding nucleoside 1-β-D-ribofuranosyl -2-trifluoromethylnaphth[2,3-d]imidazole (4). Structural proofs are based on elementary analysis, UV-and 1H-NMR spectra.  相似文献   

8.
Abstract

Several types of 3-deazaadenine pentofuranosides, represented by 9-(3-deoxy-β-D-glycero-pent-3-enofuranosyl)-3-deazaadenine (1), 9-(5-deoxy-β-Q-erythro-pent-4-enofuranosyl)-3-deazaadenine (2) and 9-β-D-xylo-furanosyl-3-deazaadenine (3), were prepared starting from 6-chloro-9-β-D-ribofuranosyl-3-deazaadenine (4).  相似文献   

9.
Abstract

Several 4-substituted-1-β-D-ribofuranosyl-3-hydroxypyrazoles were prepared as structural analogs of pyrazofurin. Glycosylation of the TMS derivative of ethyl 3(5)-hydroxypyrazole-4-carboxylate (3) with 1-0-acetyl-2,3,5-tri-0-benzoyl-D-ribofuranose in the presence of TMS-triflate gave predominantly ethyl 3-hydroxy-1-(2,3,5-tri-0-benzoyl-β-D-ribofuranosyl)pyrazole-4-carboxylate (4a), which on subsequent ammonolysis furnished 3-hydroxy-1-β-D-ribofuranosylpyrazole-4-carboxamide (5). Benzylation of 4a with benzyl bromide and further ammonolysis gave 3-benzyloxy-1-β-D-ribofuranosylpyrazole-4-carboxamide (8a). Catalytic (Pd/C) hydrogenation of 8a afforded yet another high yield route to 5. Saponification of the ester function of ethyl 3-benzyloxy-1-β-D-ribofuranosylpyrazole-4-carboxylate (7b) gave the corresponding 4-carboxylic acid (6a). Phosphorylation of 8a and subsequent debenzylation of the intermediate 11a gave 3-hydroxy-1-β-D-ribofuranosylpyrazole-4-carboxamide 5′-phosphate (11b). Dehydration of 3-benzyloxy-1-(2,3,5-tri-0-acetyl-β-D-ribofuranosyl)pyrazole-4-carboxamide (8b) with POCl3 provided the corresponding 4-carbonitrile derivative (10a), which on debenzylation with Cl3SiI gave 3-hydroxy-1-(2,3,5-tri-0-acetyl-β-D-ribofuranosyl)pyrazole-4-carbonitrile (13). Reaction of 13 with H2S/pyridine and subsequent deacetylation gave 3-hydroxy-1-β-D-ribofuranosylpyrazole-4-thiocarboxamide (12b). Similarly, treatment of 13 with NH2OH afforded 3-hydroxy-1-β-D-ribofuranosylpyrazole-4-carboxamidoxime (14a), which on catalytic (Pd/C) hydrogenation gave the corresponding 4-carboxamidine derivative (14b). The structural assignment of these pyrazole ribonucleosides was made by single-crystal X-ray analysis of 6a. None of these compounds exhibited any significant antitumor or antiviral activity in cell culture.  相似文献   

10.
Abstract

Synthesis of methyl, glucosyl and ribosyl derivatives of 7-amino-2H, 4H-[1, 2, 3]triazolo [4, 5-c] [1, 2, 6] thiadiazine 5, 5-dioxide (1a) and 7-amino-4H- [1, 2, 5] thiadiazolo [3, 4-c][1, 2, 6] thiadiazine 5, 5-dioxide (2a) is described. The structures of the glycosyl derivatives are discussed on the basis of their PMR- and UV-spectroscopic data.  相似文献   

11.
Abstract

Four fluoro modified universal nucleobases have been synthesized. The universal nucleobases 1 and 2 , containing a 2,4-difluorobenzene as nucleobase and a 4,6-difluorobenzimidazole, respectively, were chemically incorporated into a selected hammerhead ribozyme sequence which has already been retrovirally expressed as an anti-HIV ribozyme to investigate their effect on the catalytic activity of the ribozymes. The substitution of the natural nucleosides with either 1 or 2 results only in a small decrease of the catalytic activity. The Km value for the monosubstituted ribozyme with a 2,4-difluorobenzene is 309 nM?1, the corresponding kcat is 2.91 · 10?3 min?1. A disubstituted hammerhead ribozyme carrying one of each modification has also been synthesized. For a further stabilization of the ribozyme/substrate complex 2′-(β-aminoethoxy) modified fluorinated nucleosides 15 and 16 have been developed.  相似文献   

12.
Abstract

Application of previously described methodologies, for the synthesis of 2′,3′-dideoxy-2′,3′-didehydro nucleosides from the parent ribonucleosides, to the antibiotics tubercidin (1), toyocamycin (6) and sangivamycin (10) has provided the corresponding 2′,3′-unsaturated nucleosides 4, 9, and 13. A reduction of the 2′,3′-unsaturated moiety has afforded the 2′,3′-dideoxynucleoside antibiotics 5, 14, and 15.  相似文献   

13.
Abstract

Model reactions with 2-methylthiopteridin-4,7(3H,8H)-diones (3-5) and 4-benzyloxy-8-methyl-2-thiopteridin-7(8H)-one (11) showed that peracid oxidations lead to the corresponding 2-methylsulfonyl-6-oxo derivatives 8, 9, 10 and 12. The structurally analogous pteridine-N-8-ribosides 19-21 and 26 revealed the same behaviour, which allowed the synthesis of 8-β-D-ribofuranosylleu-copterin (30) from 4-benzyloxy-8-(2,3,5-tri-O-benzoyl-β-D-ribofu-ranosyl)-2-methylthio-pteridi-7(8H)-one (26) via the intermediates 27-29. The newly synthesized compounds have been characterized by elemental analysis and UV spectra.  相似文献   

14.
Abstract

Cis and trans-1-(4-hydroxy-2-cyclohexenyl)- and 1-(2-hydroxy-5-cyclohexenyl) thymines were obtained by stereospecific routes. Oxidation of the 1, 4-products afforded 1-(4-oxo-2-cyclohexenyl)thymine, the carbocyclic analog of a reportedly antiviral ketopyranosyl nucleoside. Exclusive 1, 6-conjugate addition occurred with heterocyclic bases and methyl 1, 3-cyclohexadiene-1-carboxylate. Reduction of the thymine adduct gave 1-(4-hydroxymethyl1-3-cyclohexenyl)thymine. Michael-type addition provided a direct route to 3-oxocycloalkyl nucleosides, and lactone nucleosides resulted from addition of bases to α-methylene-γ-butyrolactone. Anti-HIV screening revealed no activity for the new compounds.  相似文献   

15.
Abstract

Reactions using tri-n-butylphosphine and dialkyldisulfides have been investigated for the synthesis of several types of thiosugar nucleosides. Thus the reaction of N6-benzoyl-2′, 3′-O-isopropylideneadenosine with a large excess of diisobutyldisulfide leads, after simple deprotection, to the transmethylation inhibitor SIBA (3) in quite good yield. Using limiting amounts of disulfide, the reaction leads instead to a pyrimidine ring-opened cyclonucleoside (11). The hydrate of 2′, 3′-O-cyclohexylideneuridine 5′-aldehyde reacts with the same reagents to give a 77% yield of the corresponding diisobutyl dithioacetal. The hydrate of N6-benzoyl-2′, 3′-O-isopropylideneadenosine 5′-aldehyde, however, gave only a single diastereomer of the 5′-alkylthio derivative of 11.  相似文献   

16.
Abstract

The facile synthesis of several substituted carbohydrates that are amenable for the preparation of 2′,3′-dideoxy-3′-hydroxymethyl nucleosides are reported. Elaboration of a previously reported analog, 5-O-benzoyl-3-deoxy-3-(benzyloxy)methyl-1,2-O-isopropylidene-β-D- ribofuranose (4) has provided two 2,3-dideoxy-3-branched ribose derivatives 5-O-benzoyl-2,3-dideoxy-3-(benzyloxy)methyl-1-O-methyl-β-D-ribofuranose (7) and 1.5-di-O-benzoyl-2,3-dideoxy-3-(benzyloxy)methyl-(α,β)-D-ribofuranose (10). Due to problems involved with the separation of anomeric mixtures when these carbohydrates were condensed with an heterocycle, another versatile synthon 5-O-benzoyl-3-deoxy-3-(benzyloxy)methyl-2-O-t-butyldimethylslyl-1-O- methyl-β-D-ribofuranose (12) was synthesized. The utility of this compound (12) is demonstrated in the total synthesis of 1-[3-deoxy-3-hydroxymethyl-β-D-ribofuranosyl]thymine (20).  相似文献   

17.
Abstract

The syntheses of all three of the mono-N-methy1 derivatives of C-ribavirin (3-β-D-ribofuranosyl-1, 2, 4-triazole-5-carboxamide, 2) have been accomplished. Reaction of 1-(β-D-ribofuranosyliminomethyl)-2-methyl-hydrazine ( 7 ) with ethyl oxamate (8) in boiling ethanol gave the N′-methyl-C-ribavirin ( 3 ). A similar treatment of β-D-ribofuranosyl-1-carboximidic acid methyl ester ( 6 ) with N′-methyloxamic hydrazide ( 10 ) furnished the N2-methyl-C-ribavirin ( 4 ). Direct methylation of unprotected 2 with methyl iodide in the presence of potassium carbonate in dimethyl sulfoxide gave N 4-methyl isomer ( 5 ) as the major product. Structural assignments of 3 , 4 , and 5 were based on the unequivocal synthetic sequences, 1H and 13C NMR data and confirmed by single crystal X-ray diffraction analysis.  相似文献   

18.
Abstract

The azidation of unprotected acyclic nucleosides (4) was carried out in a one-pot reaction by means of the reagent triphenylphosphine-carbon tetraiodide-sodium azide to give the corresponding mono-azido-acyclic nucleosides (6) in good yields without by-products such as the di-azido-acyclic nucleosides.  相似文献   

19.
Abstract

The synthesis and antiherpetic activity of 9-[[[2-hydroxy-1-(hydroxymethyl)ethyl]thio]methy1]guanine (4) and 1-[[[2-hydroxy-1-(hydroxymethyl)ethyl]thio]methy]cytosine (6), the side-chain thio analogues of ganciclovir (3) and BW A1117U (5), are described. The sidechain synthon 1,3-bis(benzyloxy)-2-[(chloromethyl)thio]propane (11) was prepared in four steps from 1,3-bis(benzyloxy)-2-propanol (7). Alkylation of 2-amino-6-chloro-9H-purine with 11 provided the intermediate 9-substituted-2-amino-6-chloropurine 12, which was conveniently converted to 4 in two steps. Reaction of a fivefold excess of cytosine with 11 provided the desired 1-isomer 14, which was debenzylated to give 6. In contrast with ganciclovir (3) and BW A1117U (5), neither 4 nor 6 had significant in vitro activity against human cytomegalovirus.  相似文献   

20.
Abstract

Various 04-alkylthymidines 14–20 have been synthesized by two different methods. 04-Alkylation takes place with 3′,5′-di-0-acetyl- (2) and 3′,5′-di-0-benzoylthymidine (3) respectively in a silver ion catalysed reaction with alkyl halides, whereas the azolide approach makes use of a nucleophilic displacement of the appropriate intermediate by alkoxides and subsequent deacylation to the free nucleosides. Structural proofs are based on elemental analyses, UV- and 1H-NMR-spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号