首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

2′,3′-Dibromo-2′,3′-dideoxy-5′-O-trityl-2′,3′-secouridine (8) with sdKF gave the 3′,4′-didehydro-2,2′-anhydro nucleoside 9, which was deprotected to 10. Hydrolysis of 9 gave 3′,4′-didehydro-3′-deoxy-5′-O-trityl-2′,3′-secouridine (11a). Similarly, compound 9 with pyridinium halides gave the corresponding 2′-deoxy-2′-halo nucleosides (11b-d). Compound 11d with azide ion gave 2′-azido analogue 11e. Compound 9 with an excess amount of azide ion gave the 2′-azido triazole (13).  相似文献   

2.
Abstract

Two representative S-cyclonucleosides, 8,5′-anhydro-2′, 3′-O-isopropylidene-8-mercaptoadenosine (3) and 8,2′-anhydro-3′,5′-O-(tetraisopropyldisiloxane-1,3-diyl)-8-mercaptoguanosine (8), were prepared in good yields by dropwise addition of one equivalent each of triphenylphosphine and DEAD in DMF into a mixture of 2′,3′-O-isopropylidene-8-mercaptoadenosine (2) or 3′,5′-O-(tetra-iso-propyldisiloxane-1,3-diyl)-8-mercaptoguanosine (7), respectively, in DMF. Treatment of compound 2 with two equivalents each of triphenylphosphine and DEAD in DMF afforded N-[8,5′-anhydro-2′,3′-O-isopropylidene-8-mercaptopurin-6-yl]triphenylphospha-λ5-azene (4) in 87% yield.  相似文献   

3.
Abstract

New methods for the synthesis of 2′,3′-didehydro-2′,3′-dideoxy-2′ (and 3′)-methyl-5-methyluridines and 2′,3′-dideoxy-2′ (and 3′)-methylidene pyrimidine nucleosides have been developed from the corresponding 2′ (and 3′)-deoxy-2′ (and 3′)-methylidene pyrimidine nucleosides. Treatment of a 3′-deoxy-3′-methylidene-5-methyluridine derivative 8 with 1,1′-thiocarbonyldiimidazole gave the allylic rearranged 2′,3′-didehydro-2′,3′-dideoxy-3′-[(imidazol-1-yl)carbonylthiomethyl] derivative 24. On the other hand, reaction of 8 with methyloxalyl chloride afforded 2′-O-methyloxalyl ester 25. Radical deoxygenation of both 24 and 25 gave 26 exclusively. Palladium-catalyzed reduction of 2′,5′-di-O-acetyl-3′-deoxy-3′-methylidene-5-methyluridine (32) with triethylammonium formate as a hydride donor regioselectively afforded the 2′,3′-dideoxy-3′-methylidene derivative 35 and 2′,3′-didehydro-2′,3′-dideoxy-3′-methyl derivative 34 in a ratio of 95:5 in 78% yield. These reactions were used on the corresponding 2′-deoxy-2′-methylidene derivatives. An alternative synthesis of 2′,3′-dideoxy-2′-methylidene pyrimidine nucleosides (43, 52, and 54) was achieved from the corresponding 1-(3-deoxy-β-D-thero-pentofuranosyl)pyrimidines (44 and 45). The cytotoxicity against L1210 and KB cells and inhibitory activity of the pathogenicity of HIV-1 are also described  相似文献   

4.
Abstract

A group of 5′-O-myristoyl analogue derivatives of FLT (2) were evaluated as potential anti-HIV agents that were designed to serve as prodrugs to FLT. 3′-Fluoro-2′,3′-dideoxy-5′-O-(12-methoxydodecanoyl)thymidine (4) (EC50 = 3.8 nM) and 3′-fluoro-2′,3′-dideoxy-5′-O-(12-azidododecanoyl)thymidine (8) (EC50 = 2.8 nM) were the most effective anti-HIV-1 agents. There was a linear correlation between Log P and HPLC Log retention time for the 5 ′-O-FLT esters. The in vitro enzymatic hydrolysis half-life (t½), among the group of esters (3–8) in porcine liver esterase, rat plasma and rat brain homogenate was longer for 3′-fluoro-2′,3′-dideoxy-5 ′-O-(myristoyl)thymidine (7), with t½ values of 20.3, 4.6 and 17.5 min, respectively.  相似文献   

5.
Abstract

Radical reactions of 5′-O-(2-bromo-1-methoxy)ethyl- and 5′-O-(2-propynyl)-2′,3′-dideoxy-2′,3′-didehydrouridines were investigated. Both reactions proceeded in a 6-exo-trig manner to give products cyclized regio- and stereospecifically at the 3′-position. The structures of these products were analyzed by X-ray crystallography.

  相似文献   

6.

Since the discovery of 3′-azido-3′-deoxythymidine (AZT) and 2′,3′-didehydro-2′,3′-dideoxythymidine (d4T) as potent and selective inhibitors of the replication of human immunodeficiency virus (HIV), there has been a growing interest for the synthesis of 2′,3′-didehydro-2′,3′-dideoxynucleosides with electron withdrawing groups on the sugar moiety. Here we described an efficient method for the synthesis of such nucleoside analogs bearing structural features of both AZT and d4T. The key intermediate, 3-azido-1,2-bis-O-acetyl-5-O-benzoyl-3-deoxy-D-ribofuranose, 5 was synthesized from commercially available D-xylose in five steps, from which a series of pyrimidine and purine nucleosides were synthesized in high yields. The resultant protected nucleosides were converted to target nucleosides using appropriate chemical modifications. The final nucleosides were evaluated as potential anti-HIV agents.  相似文献   

7.
Abstract

Treatment of 3′,5′-O-(tetraisopropyldisiloxanyl)adenosine and its arabino epimer with trifluoromethanesulfonyl chloride/DMAP gave the 2′-triflates in high yields. Displacements (LiN3/DMF) and deprotection gave 2′-azido-2′-deoxyadenosine and its arabino epimer which were reduced with Bu3SnH/AIBN/DMAC/benzene (or Staudinger reduction) to give 2′-amino-2′-deoxyadenosine and its epimer. Oxidation of 2′,5′-bis-O-(tert-butyldimethylsilyl)adenosine, stereoselective reduction, triflation, azide displacement, deprotection, and reduction gave 3′-amino-3′-deoxyadenosine.  相似文献   

8.
ABSTRACT

The protected analogue of 2-amnio-6-chloropurine arabinoside (3b) was subjected to reaction with diethylaminosulfur trifluoride (DAST) and subsequently treated with NaOAc in Ac2O/AcOH to give N 2,O 3′,O 5′-triacetyl-2′-deoxy-2′-fluoroguanosine (5a). After deacetylation of the sugar moiety and protection of 5′-OH by a 4,4′-dimethoxytrityl group, this nucleoside component was converted to 2′-deoxy-2′-fluoroguanyl-(3′,5′)-guanosine (6c, GfpG).  相似文献   

9.
Abstract

The pharmacokinetics and toxicology of 2′,3′-dideoxy-β-L-5-fluorocytidine (β-L-FddC) and 2′,3′-dideoxy-β-L-cytidine (β-L-ddC) in mice was investigated. In addition, 2′,3′-dideoxy-β-L-5-azacytidine (β-L-5-aza-ddC) and its α-L-anomer (α-L-5-aza-ddC) were synthesized by coupling the silylated 5-azacytosine derivative with 1-O-acetyl-5-O-(tert-butyldimethylsilyl)-2,3-dideoxy-L-ribofuranose, followed by separation of the α-and β-anomers and were evaluated in vitro against HBV and HIV. β-L-5-aza-ddC was found to show significant anti-HBV activity at approximately the same level as 2′,3′-dideoxy-β-D-cytidine (ddC), which is a known anti-HBV agent. β-L-5-aza-ddC was not cytotoxic to L1210, P388, S-180, and CCRF-CEM cells up to a concentration of 100 μ. Conversely, the α-L-anomer was not active against HBV at the same concentration.  相似文献   

10.
Abstract

Efficient syntheses of 2′-bromo-2′-deoxy-3′,5′-O-TPDS-uridine (5a) and 1-(2-bromo-3,5-O-TPDS-β-D-ribofuranosyl)thymine (5b) from uridine and 1-(β-D-ribofuranosyl)thymine are described, respectively. The key step is a treatment of 3′,5′-O-TPDS-O2,2′-anhydro-1-(β-D-ardbinofuranosyl)uracil (4a) and -thymine (4b) with LiBr in the presence of BF3-OEt2 in 1,4-dioxane at 60°C to give 5a and 5b in 98%, and 96% yield, respectively.

  相似文献   

11.
Abstract

A summary delineating the large scale synthetic studies to prepare labeled precursors of ribonucleosides-3′,4′,5′,5″- 2H 4 and -2′,3′,4′,5′,5″- 2H 5 from D-glucose is presented. The recycling of deuterium-labeled by-products has been devised to give a high overall yield of the intermediates and an expedient protocol has been elaborated for the conversion of 3-O-benzyl-α,β-D-allofuranose-3,4-d 2 6 to 1-O-methyl-3-O-benzyl-2-O-t-butyldimethylsilyl-α,β-D-ribofuranose-3,4,5,5′-d 4 16 (precursor of ribonucleosides-3′,4′,5′,5″- 2H 4 ) or to 1-O-methyl-3,5-di-O-benzyl-α,β-D-ribofuranose-3,4,5,5′-d 4 18 (precursor of ribonucleosides-3′,4′,5′,5″- 2H 4 ).  相似文献   

12.
The nucleophilic addition–elimination reaction of 2′,3′,5′-tri-O-acetyl-2-fluoro-O 6-[2-(4-nitrophenyl)ethyl]inosine (8) with [15N]benzylamine in the presence of triethylamine afforded the N 2-benzyl[2-15N]guanosine derivative (13) in a high yield, which was further converted into the N 2-benzoyl[2-15N] guanosine derivative by treatment with ruthenium trichloride and tetrabutyl-ammonium periodate. A similar sequence of reactions of 2′,3′,5′-tri-O-acetyl-2-fluoro-O 6-[2-(methylthio)ethyl]inosine (9) and the 6-chloro-2-fluoro-9-(β-D-ribofuranosyl)-9H-purine derivative (11), which were respectively prepared from guanosine, with potassium [15N]phthalimide afforded the N 2-phthaloyl [2-15N]guanosine derivative (15; 62%) and 9-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)-6-chloro-2-[15N]phthalimido-9H-purine (17; 64%), respectively. Compounds 15 and 17 were then efficiently converted into 2′,3′,5′-tri-O-acetyl[2-15N]guanosine. The corresponding 2′-deoxy derivatives (16 and 18) were also synthesized through similar procedures.  相似文献   

13.
Abstract

A new approach to the synthesis of 2′,3′-dideoxyadenosine and 2′,3′-dideoxyinosine based on deoxygenation of 2′,3′-di-O-mesylnucleosides was developed.  相似文献   

14.
Abstract

3′,5′-Di-O-protected 6-chloropurine arabinoside 4b was treated with diethylaminosulfur trifluoride (DAST) and subsequently deprotected with pyridinium p-toluenesulfonate to give 6-chloropurine 2′-deoxy-2′-fluororiboside 6a. The displacement with nucleophile afforded the 6-substituted congener 6b-e. Treatment of 5′-O-protected 6-chloropurine arabinoside 3c with DAST gave lyxoepoxide 7.  相似文献   

15.
Abstract

Practical method to produce 2′,3′-dideoxypurinenucleosides from 9-(2,5-di-O-acetyl-3-bromo-3-deoxy-β-D-xylofuranosyl)purines (1) was developed. High ratio of 2′,3′-dideoxynucleoside to 3′-deoxyribonucleoside was obtained by selecting the reaction conditions (solvent, pH and/or base), or changing 2′-acyloxy leaving group. The reaction mechanism was studied by deuteration experiments of 1a and 1-(3,5-di-O-acety1-2-bromo-2-deoxy-β-D-ribofuranosyl)thymine (12).

  相似文献   

16.
Abstract

Adenine and thymine derivatives of 2′,3′-dideoxy-2′,3′-didehydropento-pyranosyl nucleosides carrying a phosphonomethyl moiety at their 4′-O-position and in a cis relationship with the heterocyclic base have been synthesized.  相似文献   

17.
Abstract

The synthesis of the blocked nucleoside 3′,5′-di-O-p-toluoyl-4-O-methyl-5-formylmethyl-2′-deoxyuridine (19) was accomplishied in eleven steps from gamma-butyrolactone. This aldehyde, which should facilitate the synthesis of nucleosides containing 18F, was converted to the corresponding blocked dithianyl nucleoside (21), and also to 5-(2,2-difluoroethyl)-substituted derivatives of 2′-deoxyuridine and 2′-deoxycytidine.  相似文献   

18.
6-S-[2-[(2-ethylhexyl)oxycarbonyl]ethyl)}-3′,5′-O-bis(tert-butyldimethylsilyl)-2′-deoxy-6-thiogua nosine (2) was synthesized in high yield from the corresponding 6-O-mesitylenesulfonyl derivative by the reaction with 2-ethylhexyl 3-mercapto-propionate. The phosphoramidite precursor derived from 2 was successfully applied to an automated DNA synthesizer to produce 2′-deoxy-6-thioguanosine containing ODN. The results showed that 2-ethylhexyl 3-mercaptopropionate is useful as an odor less reagent and also as an S-protecting group of 2′-deoxy-6-thioguanosine.  相似文献   

19.
Abstract

2,2′-Anhydro-1-(5,6-di-O-benzoyl-β-D-altrofuranosyl)thymine 6 and uracil derivative 7 are prepared by transformation of the corresponding 5′,6′-di-O-benzoyl-3′-O-mesyl-β-D-glucofuranosyl nucleosides 4 and 5 into the 2,2′-anhydro derivatives 6 and 7 using DBU.  相似文献   

20.
Protected dinucleoside‐2′,5′‐monophosphate has been prepared to develop a prodrug strategy for 2‐5A. The removal of enzymatically and thermally labile 4‐(acetylthio)‐2‐(ethoxycarbonyl)‐3‐oxo‐2‐methylbutyl phosphate protecting group and enzymatically labile 3′‐O‐pivaloyloxymethyl group was followed at pH 7.5 and 37 °C by HPLC from the fully protected dimeric adenosine‐2′,5′‐monophosphate 1 used as a model compound for 2‐5A. The desired unprotected 2′,3′‐O‐isopropylideneadenosine‐2′,5′‐monophosphate ( 9 ) was observed to accumulate as a major product. Neither the competitive isomerization of 2′,5′‐ to a 3′,5′‐linkage nor the P–O5′ bond cleavage was detected. The phosphate protecting group was removed faster than the 3′‐O‐protection and, hence, the attack of the neighbouring 3′‐OH on phosphotriester moiety did not take place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号