首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Nucleoside analogues analogues1-(2′,3′-dideoxy-2′-C-hydroxymethyl-β-D-erythro-pentofuranos-yl)thymine (1), 2′,3′-dideoxy-2′-C-hydroxymethylcytidine (2), 2′,3′-dideoxy-2′-C-hydroxymethyladenosine (3), 1-(2′-C-azidomethyl-2′,3′-dideoxy-β-D-erythro-pento-furanosyl)thymine (4), 2′-C-azidomethyl-2′,3′-dideoxycytidine (5), and 2′3′-dideoxy-2′-C-methylcytidine (6) have been synthesized from (S)-4-hydroxymethyl-y-butyro-lactone (7)  相似文献   

2.
Abstract

2′,3′-Dibromo-2′,3′-dideoxy-5′-O-trityl-2′,3′-secouridine (8) with sdKF gave the 3′,4′-didehydro-2,2′-anhydro nucleoside 9, which was deprotected to 10. Hydrolysis of 9 gave 3′,4′-didehydro-3′-deoxy-5′-O-trityl-2′,3′-secouridine (11a). Similarly, compound 9 with pyridinium halides gave the corresponding 2′-deoxy-2′-halo nucleosides (11b-d). Compound 11d with azide ion gave 2′-azido analogue 11e. Compound 9 with an excess amount of azide ion gave the 2′-azido triazole (13).  相似文献   

3.
A general method is described for synthesizing 3′,5′-dithio-2′-deoxypyrimidine nucleosides 6 and 13 from normal 2′-deoxynucleosides. 2,3′-Anhydronucleosides 2 and 9 are applied as intermediates in the process to reverse the conformation of 3′-position on sugar rings. The intramolecular rings of 2,3′-anhydrothymidine and uridine are opened by thioacetic acid directly to produce 3′-S-acetyl-3′-thio-2′-deoxynucleosides 3 or 5. To cytidine, OH? ion exchange resin was used to open the ring and 2′-deoxycytidine 10 was abtained in which 3′-OH group is in threo-conformation. The 3′-OH is activated by MsCl, and then substituted by potassium thioacetate to form the S,S′-diacetyl-3′,5′-dithio-2′-deoxycytidine 12. The acetyl groups in 3′,5′ position are removed rapidly by EtSNa in EtSH solution to afford the target molecules 6 and 13. The differences of synthetic routes between uridine and cytidine are also discusssed.  相似文献   

4.
Abstract

Reaction of 2′-deoxy-2′-methylidene-5′-O-trityluridine (1) with diethylamino-sulfur trifluoride (DAST) in CH2Cl2 resulted in the formation of a mixture of (3′R)-2′,3′-dideoxy-3′-fluoro-2′-methylidene derivative 3 and 2′,3′-didehydro-2′,3′-dideoxy-2′-fluoromethyl derivative 4 (3:4 = 1:1.5) in 65% yield. A similar treatment of 1-(2-deoxy-2-methylidene-5-O-trityl-β-D-threo-pentofuranosyl)uracil (19) with DAST in CH2Cl2 afforded (3′S)-2′,3′-dideoxy-3′-fluoro-2′-methylidene derivatives 20 and 4 in 38% and 17% yields respectively. Transformation of the uracil nucleosides 4, 12, and 20 into cytosines followed by deprotection furnished the corresponding cytidine derivatives 29, 18, and 25, respectively. The corresponding thymidine congener 27 was also synthesized in a similar manner. All of the newly synthesized nucleosides were evaluated for their inhibitory activities against HIV and for their antiproliferative activities against L1210 and KB cells.  相似文献   

5.
Abstract

New methods for the synthesis of 2′,3′-didehydro-2′,3′-dideoxy-2′ (and 3′)-methyl-5-methyluridines and 2′,3′-dideoxy-2′ (and 3′)-methylidene pyrimidine nucleosides have been developed from the corresponding 2′ (and 3′)-deoxy-2′ (and 3′)-methylidene pyrimidine nucleosides. Treatment of a 3′-deoxy-3′-methylidene-5-methyluridine derivative 8 with 1,1′-thiocarbonyldiimidazole gave the allylic rearranged 2′,3′-didehydro-2′,3′-dideoxy-3′-[(imidazol-1-yl)carbonylthiomethyl] derivative 24. On the other hand, reaction of 8 with methyloxalyl chloride afforded 2′-O-methyloxalyl ester 25. Radical deoxygenation of both 24 and 25 gave 26 exclusively. Palladium-catalyzed reduction of 2′,5′-di-O-acetyl-3′-deoxy-3′-methylidene-5-methyluridine (32) with triethylammonium formate as a hydride donor regioselectively afforded the 2′,3′-dideoxy-3′-methylidene derivative 35 and 2′,3′-didehydro-2′,3′-dideoxy-3′-methyl derivative 34 in a ratio of 95:5 in 78% yield. These reactions were used on the corresponding 2′-deoxy-2′-methylidene derivatives. An alternative synthesis of 2′,3′-dideoxy-2′-methylidene pyrimidine nucleosides (43, 52, and 54) was achieved from the corresponding 1-(3-deoxy-β-D-thero-pentofuranosyl)pyrimidines (44 and 45). The cytotoxicity against L1210 and KB cells and inhibitory activity of the pathogenicity of HIV-1 are also described  相似文献   

6.
Abstract

3′-Deoxy-3′-(2-mesyloxyethyl)ribofuranosylthymine derivative 3, and its 2′-methoxy (16) and 2′-deoxy (38) analogs were condensed with 5′-deoxy-5′-thiothymidine 4 and 17 or 2′-O-methyl-5′-deoxy-5′-thiouridine 34 and 37 to provide, after standard functional group transformations, thymidine-thymidine and uridine-thymidine dimers 9, 21, 43 and 47. Oxidation of model sulfide dimer 48 with oxone gave sulfone 49. It was not stable to 27% ammonia.  相似文献   

7.
The in vitro reactivities of astaxanthin toward peroxynitrite were investigated and the reaction products after scavenging with peroxynitrite were analyzed in order to determine the complete mechanism of this reaction. A series of carotenoids, 13-apo-astaxanthinone (1), 12′-apo-15′-nitroastaxanthinal (2), 12′-apo-astaxanthinal (3), 10′-apo-astaxanthinal (4), 9-cis-14′-s-cis-15′-nitroastaxanthin (5), 14′-s-cis-15′-nitroastaxanthin (6), 13-cis-14′-s-cis-15′-nitroastaxanthin (7), 10′-s-cis-11′-cis-11′-nitroastaxanthin (8), 13,15,13′-tri-cis-15′-nitroastaxanthin (9), 9-cis-astaxanthin (10), and 13-cis-astaxanthin (11), were isolated from the reaction products of carotenoids with peroxynitrite. Our previous studies achieved for the first time the isolation of nitro derivatives from the reaction of astaxanthin with peroxynitrite. Here we identify the major remaining reaction products of this reaction and investigate the stabilities of the nitro astaxanthins.  相似文献   

8.
Abstract

The syntheses of 2′,3′-didehydro-2′,3′-dideoxyisoinosine (d4isoI, 4) as well as 7-deaza-2′,3′-didehydro-2′,3′-dideoxyisoinosine (d4c7isoI, 5) are described. Compounds 4 and 5 show both strong fluorescence. Compound 4 is oxidized by xanthine oxidase to give the corresponding xanthine 2′,3′-dideoxy-2′,3′-didehydronucleosides. A preparative chemo-enzymatic synthesis of 2′-deoxyxanthosine (3) is described.  相似文献   

9.
Abstract

A short high yielding synthesis of the potent anti-varicella-zoster virus (VZV) carbocyclic nucleoside analogue carba-BVDU 1 starting from aminodiol 2 is described. Reaction of 2 with acyl carbamate 3 and subsequent ring closure under acidic conditions afforded 5-ethyl-2′-deoxy-4′a-carbauridine 5. In situ acetylation of 5 afforded 3′,5′-di-O-acetyl-5-ethyl-2′-deoxy-4′a-carbauridine 6 in 78% overall yield from 2. Radical bromination of 6 with either bromine or NBS and subsequent treatment with triethylamine gave an efficient conversion to 3′,5′-di-O-acetyl-5-(E)-(2-bromovinyl)-2′-deoxy-4′a-carbauridine 7. Deacetylation of 7 afforded 1 in an overall 45–53% yield from 2.  相似文献   

10.
Abstract

Several acyclic analogues of guanosine, 2′-deoxy-2′, 3′-secoguanosine(3), 3′-deoxy-2′, 3′-secoguanosine (4), and 2′-, 3′-dideoxy-2′-, 3′-secoguanosine were synthesized from guanosine. In addition, the 3′-, 5′-cyclic phosphate (21) and 3′-, 5′-cyclic methylphosphonates (22a, b) of 3 were also prepared. At concentrations up to 300 μM none of these compounds had significant antiherpetic activity in antiviral assays in vitro.  相似文献   

11.
Abstract

Cis-diammine Pt(II)- bridged bis-netropsin and oligomethylene-bridged bis-netropsin in which two monomers are linked in a tail-to-tail manner bind to the DNA oligomer with the sequence 5′-CCTATATCC-3′ in a parallel-stranded hairpin form with a stoichiometry 1:1. The difference circular dichroism (CD) spectra characteristic of binding of these ligands in the hairpin form are similar. They differ from CD patterns obtained for binding to the same duplex of another bis-netropsin in which two netropsin moieties were linked in a head-to-tail manner. This reflects the fact that tail-to-tail and head-to-tail bis-netropsins use parallel and antiparallel side-by-side motifs, respectively, for binding to DNA in the hairpin forms. The binding affinity of cis -diammine Pt(II)- bridged bis-netropsin in the hairpin form to DNA oligomers with nucleotide sequences 5′-CCTATATCC-3′ (I), 5′-CCTTAATCC-3′ (II), 5′-CCTTATTCC-3′ (III), 5′-CCTTTTTCC-3′ (IV) and 5′-CCAATTTCC-3′ (V) decreases in the order I = II > III > IV> V. The binding of oligomethylene-bridged bis-netropsin in the hairpin form follows a similar hierarchy. An opposite order of sequence preferences is observed for partially bonded monodentate binding mode of the synthetic ligand.  相似文献   

12.
Abstract

2′-5′ and 3′-5′ linked 2-aminoadenylyl-2-aminoadenosines [(2′-5′)n2Apn2A (1) and (3′-5′)n2Apn2A (2)] were synthesized by condensation of 5′-O-monomethoxytrityl-N 2 N 6-dibenzoyl-2-aminoadenosine and N 2,N 6,2′,3′-O-tetrabenzoyl-2-aminoadenosine 5′-phosphate using dicyclohexylcarbodiimide (DCC). The conformational properties of these dimers 1 and 2 were examined by UV, NMR and CD spectroscopy. The results reveal that the 2′-5′-isomer 1 takes a stacked conformation, which contains a larger base-base overlap and is more stable against thermal perturbation with respect to the 3′-5′-isomer 2. Interactions of 1 and 2 with polyuridylic acid (Poly (U)) were also examined by Tm, mixing curves, UV and CD spectra. Both the dinucleoside isomers 1 and 2 formed a complex of 1 : 2 stoichiometry with poly(U), which was much more stable than that of the corresponding ApA isomer  相似文献   

13.
The thioamide derivatives 3′-deoxy-5′-O-(4,4′-dimethoxytrityl)-3′-[(2-methyl-1-thioxo-propyl)amino]thymidine 1 and 3′-deoxy-5′-O-(4,4′-dimethoxytrityl)-3′-{{6-{[(9H-(fluo-ren-9-ylmethoxy)carbonyl]-amino}-1-thioxohexyl}amino} thymidine 2 were synthesized by regioselective thionation of their corresponding amides 7 and 8 with 2,4-bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphet-ane-2,4-disulfide (Lawesson's reagent). The thioamides were converted into the corresponding 5′-triphosphates 3 and 4. Compound 3 was chosen for DNA sequencing experiments and 4 was further labelled with fluorescein.  相似文献   

14.
Abstract

Treatment of O2, 3′-anhydro-5′-O-trityl derivatives of thymidine (1) and 2′-deoxyuridine (2) with lithium azide in dimethylformamide at 150 °C resulted in the formation of the corresponding isomeric 3′-azido-2′, 3′-dideoxy-5′-O-trityl-β-D-ribofuranosyl N1- (the major products) and N3-nucleosides (3/4 and 5/6). 3′-Amino-2′, 3′-dideoxy-β-D-ribofuranosides of thymidine [Thd(3′NH2)], uridine [dUrd(3′NH2)], and cytidine [dCyd(3′NH2)] were synthesized from the corresponding 3′-azido derivatives. The Thd(3′NH2) and dUrd(3′NH2) were used as donors of carbohydrate moiety in the reaction of enzymatic transglycosylation of adenine and guanine to afford dAdo(3′NH2) and dGuo(3′NH2). The substrate activity of dN(3′NH2) vs. nucleoside phosphotransferase of the whole cells of Erwinia herbicola was studied.  相似文献   

15.
Abstract

Crystal structure analysis of 2′,3′-dideoxy-3′-fluorocytidine (1) and its prodrug derivative, N4-dimethylaminomethylene-2′,3′-dideoxy-3′-fluorocytidine (2), active anti-HIV nucleoside analogues, reveals that both structures adopt an anti conformation about the glycosyl bond. The furanose ring is C2′-endo for (2) and C2′-endo/C1′-exo and C2′-endo/C3′-exo for the two independent molecules of (1), respectively.  相似文献   

16.
Abstract

The synthesis of 3′-fluorinated apionucleosides 7 and 2′-fluoro-2′, 3′-unsaturated L-nucleosides 8 via common synthon, 2-fluoro-butenolide 2, has been described. Among the newly synthesized nucleosides, L-2′-F-d4C, L-2′-F-d4FC and L-2′-F-d4A exhibit significant anti-HIV and anti-HBV activities.  相似文献   

17.
ABSTRACT

The protected analogue of 2-amnio-6-chloropurine arabinoside (3b) was subjected to reaction with diethylaminosulfur trifluoride (DAST) and subsequently treated with NaOAc in Ac2O/AcOH to give N 2,O 3′,O 5′-triacetyl-2′-deoxy-2′-fluoroguanosine (5a). After deacetylation of the sugar moiety and protection of 5′-OH by a 4,4′-dimethoxytrityl group, this nucleoside component was converted to 2′-deoxy-2′-fluoroguanyl-(3′,5′)-guanosine (6c, GfpG).  相似文献   

18.
Abstract

Novel 5′-amino-5′-deoxy-2′-O-methyl uridine, guanosine and adenosine 3′-O-phosphoramidites 5, 11, and 20, as well as protected 5′-mercapto-5′-deoxy-2′-O-methyl uridine 3′-O-phosphoramidite 23 were synthesized from 2′-O-methyl nucleosides. These analogs were incorporated at the 5′-ends of hammerhead ribozymes to evaluate achiral bridging 5′-N- phosphoramidates and 5′-S-phosphorothioates as alternatives for non- bridging phosphorothioates commonly used for end stabilization against nucleases. Oligonucleotide synthesis and deprotection conditions were optimized for better yields of these modified ribozymes.  相似文献   

19.
A new anti‐HIV agent 4′‐cyano‐2′,3′‐didehydro‐3′‐deoxythymidine (9) was synthesized by allylic substitution of the 3′,4′‐unsaturated nucleoside 14, having a leaving group at the 2′‐position, with cyanotrimethylsilane in the presence of SnCl4. Evaluation of the anti‐HIV activity of 9 showed that this compound is much less potent than the recently reported 2′,3′‐didehydro‐3′‐deoxy‐4′‐(ethynyl)thymidine (1).  相似文献   

20.
Abstract

Synthesis of 2′-deoxy-2′,3′-secothymidine t and its dimer t?t, where the two 2′-deoxy-2′,3′-secothymidine t units are connected via a carbamate, ?=3′-NH-CO-O-5′, internucleoside linkage has been achieved. These building blocks were protected in the 5′-position, converted into their phosphoramidites, or attached onto CPG, and then used for “chimeric oligonucleotide” synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号