首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

A serendipitous synthesis of 8-dimsyl-dG (2) has been achieved along with the known 8-benzyloxy-dG (3) in a nucleophilic substitution reaction of 8-bromo-dG (1) with in situ generated dimsyl and benzyloxy sodium. Compound 3 was directly converted into the mutagenic oxidative DNA damage product, 8-oxo-dGTP (4).  相似文献   

2.
Abstract

A general method for the synthesis of 2′-C-α-methyl-2′,3′-dideoxynucleosides is presented. Stereofacial selectivity of the 2-C-methylation reaction of γ-lactone has been investigated, in which the presence of a bulky group at the 5-hydroxymethyl produced the α-isomer as a major product. During glycosylation, the α-methyl group directed the formation of nucleosides in favor of the ß-isomer. This methodology is applied to the synthesis of some new pyrimidine and purine nucleosides.

  相似文献   

3.
Abstract

Phosphorylation of 2′-0-acetyl-3′-trifluoroacetamido-3′-deoxy-N2-palmitoylguanosine with N-morpholino-O, O-bis(1-benzotriazolyl)phos-phate gives a 5′-phosphotriester. Removal of the benzotriazolyl group and addition of pyrophosphoric acid gave, after deblocking all protecting groups, GTP(3′NH2).  相似文献   

4.
An efficient process to synthesize 5′-O-dimethoxytrityl-N4-benzoyl-5-methyl-2 ′-deoxycytidine in high yield and quality is described. Final benzoylation was improved by developing a method to selectively hydrolyze benzoyl ester impurities. This inexpensive approach was scaled up to multi-kilogram quantities for routine use in oligonucleotide therapeutics.  相似文献   

5.
Abstract

Various 6-substituted purine 3′-(2′-) azido-3′, 4′-(2′, 4′-) dideoxy-β-DL-erythro-pentopyranoses (1) (2) have been prepared and compared in terms of a substituent electronegativity parameter. The nucleoside 1a (R=NH2) is a good competitive inhibitor of adenosine deaminase.  相似文献   

6.
Abstract

3′,5′-Di-O-protected 6-chloropurine arabinoside 4b was treated with diethylaminosulfur trifluoride (DAST) and subsequently deprotected with pyridinium p-toluenesulfonate to give 6-chloropurine 2′-deoxy-2′-fluororiboside 6a. The displacement with nucleophile afforded the 6-substituted congener 6b-e. Treatment of 5′-O-protected 6-chloropurine arabinoside 3c with DAST gave lyxoepoxide 7.  相似文献   

7.
The 2′-deoxynucleoside containing the synthetic base 1-[(2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)-tetrahydrofuran-2-yl)-1H-perimidin-2(3H)-one] (dPer) recognizes in DNA the O6-benzyl-2′-deoxyguanosine nucleoside (O6-Bn-dG), formed by exposure to N-benzylmethylnitrosamine. Herein, we show how dPer distinguishes between O6-Bn-dG and dG in DNA. The structure of the modified Dickerson–Drew dodecamer (DDD) in which guanine at position G4 has been replaced by O6-Bn-dG and cytosine C9 has been replaced with dPer to form the modified O6-Bn-dG:dPer (DDD-XY) duplex [5′-d(C1G2C3X4A5A6T7T8Y9G10C11G12)-3′]2 (X = O6-Bn-dG, Y = dPer) reveals that dPer intercalates into the duplex and adopts the syn conformation about the glycosyl bond. This provides a binding pocket that allows the benzyl group of O6-Bn-dG to intercalate between Per and thymine of the 3′-neighbor A:T base pair. Nuclear magnetic resonance data suggest that a similar intercalative recognition mechanism applies in this sequence in solution. However, in solution, the benzyl ring of O6-Bn-dG undergoes rotation on the nuclear magnetic resonance time scale. In contrast, the structure of the modified DDD in which cytosine at position C9 is replaced with dPer to form the dG:dPer (DDD-GY) [5′-d(C1G2C3G4A5A6T7T8Y9G10C11G12)-3′]2 duplex (Y = dPer) reveals that dPer adopts the anti conformation about the glycosyl bond and forms a less stable wobble pairing interaction with guanine.  相似文献   

8.
Abstract

A facile synthesis of oligodeoxynucleotides (ODN) containing 2′-deoxy-6-thioinosine (dI6S) based on the convertible nucleoside O6-phenyl-2′-deoxyinosine is presented. After standard solid-phase DNA synthesis and removal of the cyanoethyl protecting groups with DBU treatment with aqueous sodium hydrogen sulfide introduces the sulfur functionality, deprotects the other nucleobases and cleaves the ODN from the solid support in a one-pot reaction. In addition, the extinction coefficient of 2′-deoxy-6-thioinosine is determined by enzymatic fragmentation of the resulting ODN in the presence of adenosine deaminase.  相似文献   

9.
Novel 5′-deoxyapiosyl purine phosphonic acid analogues with a 2′-electropositive moiety, such as, a fluorine atom were designed and synthesized from commercially available hydroxylacetone. Condensation of a glycosyl donor 10 with purines under Vorbruggen conditions and cross-metathesis give the desired nucleoside phosphonic acid analogues 14, 17, 21, and 24. The synthesized nucleoside analogues were subjected to antiviral screening against HIV-1, and the adenine analogue 17 exhibited weak in vitro anti-HIV-1 activity (EC50 = 26.6 μM)  相似文献   

10.
Abstract

A stereospecific route for the synthesis of pyrimidine 2′-β-D-deoxyribonucleosides has been developed using suitably modified methyl 2-deoxy-D-ribofuranosides. The stereochemistry of the nucleoside bond is dictated by the chirality at C-4 of the pentofuranose. A novel palladium hydroxide catalyzed alcholysis of a nucleoside bond has been discovered. Preliminary studies of the mechanism and limitations of this reaction are described.  相似文献   

11.
Abstract

The coupling of the sodium salt of 6-methylpurine with 2-deoxy-3,5-di-O-p-toluoyl-α-D-erythro-pentofuranosyl chloride in acetonitrile gives the di -O-p-toluoyl protected 9-β nucleoside regio- and stereo-selectively in good yield. Methoxide deprotection followed by preparative hplc then affords pure 6-methyl-9-(2-deoxy-β-D-erythro-pentofuranosyl)purine.  相似文献   

12.
Formation of 7,8-dihydro-8-oxo-2′-deoxyguanosine (8-oxo-dG) in solutions of free 2′-deoxyguanosine (dG) and calf thymus DNA (DNA) was compared for the diffusion-dependent and localised production of oxygen radicals from phosphate-mediated oxidation of ferrous iron (Fe2+) to ferric iron (Fe3+). The oxidation of Fe2+ to Fe3+ was followed at 304 nm at pH 7.2 under aerobic conditions. Given that the concentration of Fe2+ ≥phosphate concentration, the rate of Fe2+ oxidation was significantly higher in DNA-phosphate as compared for the same concentration of inorganic phosphate. Phosphate catalysed oxidation of ferrous ions in solutions of dG or DNA led through the production of reactive oxygen species to the formation of 8-oxo-dG. The yield of 8-oxo-dG in solutions of dG or DNA correlated positively with the inorganic-/DNA-phosphate concentrations as well as with the concentrations of ferrous ions added. The yield of 8-oxo-dG per unit oxidised Fe2+ were similar for dG and DNA; thus, it differed markedly from radiation-induced 8-oxo-dG, where the yield in DNA was several fold higher.For DNA in solution, the localisation of the phosphate ferrous iron complex relative to the target is an important factor for the yield of 8-oxo-dG. This was supported from the observation that the yield of 8-oxo-dG in solutions of dG was significantly increased over that in DNA only when Fe2+ was oxidised in a high excess of inorganic phosphate (50 mM) and from the lower protection of DNA damage by the radical scavenger (hydroxymethyl)aminomethane (Tris)–HCl.  相似文献   

13.
The microbial synthesis of some purine 2′-amino-2′-deoxyribonucleosides from purine bases and 2′-amino-2′-deoxyuridine is described. Various bacteria, especially Erwinia herbicola, Salmonella schottmuelleri, Enterobacter aerogenes and Escherichia coli, were able to transfer the aminoribosyl moiety of 2′-amino-2′-deoxyuridine to purine bases (transaminoribosylation) in the presence of inorganic phosphate. The optimum conditions for the reaction were pH 7.0 and 63°C. No reaction was observed in the absence of inorganic phosphate and the optimum concentration of it was around 30 mm. Adenine, guanine, 2-chlorohypoxanthine and hypoxanthine were transformed to the corresponding 2′-amino-2′-deoxyribonucleosides by the catalytic activity of the wet cell paste of Enterobacter aerogenes AJ 11125. The enzymatically synthesized purine 2′-amino-2′-deoxyribonucleosides were isolated and identified by physicochemical means. 2′-Amino-2′-deoxyadenosine strongly inhibited the growth of Hela cells in tissue culture, and the ED50 was 2.5μ/ml.  相似文献   

14.
Abstract

The synthesis of 2′-amino-2′-deoxypyrimidine 5′-triphosphates is described. The 2′-amino-2′-deoxyuridine 5′-triphosphate is obtained from uridine in four steps with 25% overall yield. The 2′-amino-2′-deoxycytidine 5′-triphosphate is obtained from uridine in seven steps with 13% overall yield.  相似文献   

15.
Abstract

A novel method of synthesis of 2′-deoxy-β-d-ribonucIeosides via transglycosylation of 6-oxopurine ribonucleosides is exemplified for conversion of inosine into 6-metylpurine 2′-deoxyriboside (5). The method offers high regio- and stereoselectivity as well as a good overall yield, and in these respects is superior to the fusion or anionic glycosylation procedures.

  相似文献   

16.
Abstract

5-(2-Thienyl)-1-(2-deoxy-3,5-di-O-p-toluoyl-β-D-erythro-pentofuranosyl)-6-azauracil [VIII] and 5-cyclopropyl-1-(2-deoxy-3,5-di-O-p-toluoyl-β-D-erythro-pentofuranosyl)-6-azauracil [X] were obtained in high yields (93.5% and 81.3% respectively) exclusively as β anomers, by condensation of the corresponding silylated triazine bases with 2-deoxyu-3,5-di-O-p-toluoyl-D-erythro-pentosyl chloride in chloroform. After deblocking both nucleosides with sodium methoxide in methanol, 5-(2-thienyl)-6-aza-2′-deoxyuridine [IX] and 5-cyclopropyl-6-aza-2′-deoxyuridine [XI] were obtained. The nucleoside IX was further acetylated, brominated with Br2/CCl4 and deblocked with methanolic ammonia to give 6-aza-5[2-(5-bromothienyl)]-2′-deoxyuridine[XIV].  相似文献   

17.
Abstract

2′-Deoxy-β-L-ribonucleosides containing usual bases which are useful as synthons for modified oligodeoxyribonucleotides, were conveniently synthesized by a stereoselective glycosylation procedure. The method is suitable for large-scale preparations.  相似文献   

18.
Abstract

The preparation of 3-alkyl D4T derivatives has been carried out starting from the corresponding 5′-O-t-butyldimethylsilyl-3′-O-methanesulfonylthymidine 2 by way of deprotection-elimination and succesive alkylation reactions.  相似文献   

19.
Abstract

A direct and efficient synthesis of 5′-deoxy-2′,3′-O-isopropylideneinosine, 7, from readily available inosine is described. An example of a potentially general synthesis of N -substituted-5′-deoxyadenosines from 7 is also described.  相似文献   

20.
Abstract

An efficient and facile syntheses of 5′-O-(4, 4′-dimethoxytrityl)-3′-[2-cyanoethyl bis(1-methylethyl)]phosphoramidites of 2-N-methyl-2′-deoxy-ψ-isocytidine (6), 2-N-methyl-2′-deoxy-α-ψ-isocytidine (13), 2-N-methyl-2′-O-allyl-ψ-isocytidine (11), 1, 3-dimethyl-2′-deoxy-ψ-uridine (4) and N1-methyl-2′-O-allyl-ψ-uridine (19) have been accomplished in good overall yields. The pyrimidine-pyrimidine transformation reaction was found to be useful for the preparation of 2-N-methyl-2′-O-allyl-ψ-isocytidine (10). The utility of these novel phosphoramidites is demonstrated by their incorporation into oligonucleotides via solid-support, oligonucleotide methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号