首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

Antiretroviral nucleoside drugs used against the human immunodeficiency virus (HIV) infection have been analyzed using negative ion electrospray ionization (ESI) mass spectrometry and collision-induced dissociation (CID-MS/MS). Mass fragmentation of azidothymidine (AZT), didanosine (ddI), dideoxycytidine (ddC) and dideoxythiacytidine (3TC) were obtained at different cone voltages and collision energies. Fragmentation of purines and pyrimidines occurred by different pathways. For purines (ddI), the fragmentation was similar to those found in endogenous nucleosides; mainly the pseudo molecular ion is present (M-H) and a cleavage through the glycosidic bond forming (B) was observed. For pyrimidines (AZT, ddC, 3TC), the fragmentation pathways were different from endogenous nucleosides; for AZT, the fragmentation occurred primarily through the elimination of the azido group in the 3′-position (M-H2-N3), whereas ddC and 3TC presented more complex fragmentation patterns. For ddC, fragmentation appeared to be dominated by a retro Diels-Alder mechanism (M-CONH). For 3TC, the sulfur atom in the sugar moiety provided greater stability to the charge, producing fragments where the charge resided initially in the dideoxyribose (M-C2O2H6).  相似文献   

2.
Mass spectrometry imaging (MSI) provides untargeted molecular information with the highest specificity and spatial resolution for investigating biological tissues at the hundreds to tens of microns scale. When performed under ambient conditions, sample pre-treatment becomes unnecessary, thus simplifying the protocol while maintaining the high quality of information obtained. Desorption electrospray ionization (DESI) is a spray-based ambient MSI technique that allows for the direct sampling of surfaces in the open air, even in vivo. When used with a software-controlled sample stage, the sample is rastered underneath the DESI ionization probe, and through the time domain, m/z information is correlated with the chemical species'' spatial distribution. The fidelity of the DESI-MSI output depends on the source orientation and positioning with respect to the sample surface and mass spectrometer inlet. Herein, we review how to prepare tissue sections for DESI imaging and additional experimental conditions that directly affect image quality. Specifically, we describe the protocol for the imaging of rat brain tissue sections by DESI-MSI.  相似文献   

3.
建立电喷雾多级质谱结合硅胶柱层析快速、全面分析中药毛冬青中三萜皂苷成分的方法。毛冬青干燥根70%甲醇提取物,先用乙酸乙酯萃取,再用正丁醇萃取。取正丁醇萃取物经硅胶柱层析,以甲醇-氯仿-水(1∶9∶0.1→2∶8∶0.2→3.5∶6.5∶1→1∶1∶0.3,V/V)溶剂系统进行梯度洗脱。通过TLC比较,将毛冬青皂苷粗提物分成3个组分。通过全扫描电喷雾多级质谱对每个组分分别进行分析,并结合文献报道,确定皂苷的结构。确定了毛冬青中11个已知皂苷的结构,对1个未知皂苷的结构进行了推测。此方法具有操作简单、成本低、效率高等优点。  相似文献   

4.
疏水作用是决定生物分子的结构和性质的重要因素,特别是在蛋白质的折叠,药物分子与受体(蛋白质、DNA等)的相互作用中起着关键作用.分子疏水性的强弱决定于分子内非极性基团的含量.在一定的实验条件下,电喷雾所获得的信号与多肽分子内非极性基团的面积呈现良好的相关性.因此,采用电喷雾飞行时间质谱法,在数分钟之内快速测定了不同多肽之间的疏水性,所获得结果与色谱法结果一致.  相似文献   

5.
6.
Secondary electrospray ionization mass spectrometry (SESI-MS) is a method developed for the rapid detection of volatile compounds, without the need for sample pretreatment. The method was first described by Fenn and colleagues1 and has been applied to the detection of illicit drugs2 and explosives3-4, the characterization of skin volatiles5, and the analysis of breath6-7.SESI ionization occurs by proton transfer reactions between the electrospray solution and the volatile analyte, and is therefore suitable for the analysis of hetero-organic molecules, just as in traditional electrospray ionization (ESI). However, unlike standard ESI, the proton transfer process of SESI occurs in the vapor phase rather than in solution (Fig. 1), and therefore SESI is best suited for detecting organic volatiles and aerosols.We are expanding the use of SESI-MS to the detection of bacterial volatiles as a method for bacterial identification and characterization8. We have demonstrated that SESI-MS volatile fingerprinting, combined with a statistical analysis method, can be used to differentiate bacterial genera, species, and mixed cultures in a variety of growth media.8 Here we provide the steps for obtaining bacterial volatile fingerprints using SESI-MS, including the instrumental parameters that should be optimized to ensure robust bacterial identification and characterization.  相似文献   

7.
Nascent advanced therapies, including regenerative medicine and cell and gene therapies, rely on the production of cells in bioreactors that are highly heterogeneous in both space and time. Unfortunately, advanced therapies have failed to reach a wide patient population due to unreliable manufacturing processes that result in batch variability and cost prohibitive production. This can be attributed largely to a void in existing process analytical technologies (PATs) capable of characterizing the secreted critical quality attribute (CQA) biomolecules that correlate with the final product quality. The Dynamic Sampling Platform (DSP) is a PAT for cell bioreactor monitoring that can be coupled to a suite of sensor techniques to provide real-time feedback on spatial and temporal CQA content in situ. In this study, DSP is coupled with electrospray ionization mass spectrometry and direct-from-culture sampling to obtain measures of CQA content in bulk media and the cell microenvironment throughout the entire cell culture process (≈3 weeks). Post hoc analysis of this real-time data reveals that sampling from the microenvironment enables cell state monitoring (e.g., confluence, differentiation). These results demonstrate that an effective PAT should incorporate both spatial and temporal resolution to serve as an effective input for feedback control in biomanufacturing.  相似文献   

8.
The intracellular hemoglobin (Hb) of the marine polychaete Glycera dibranchiata is comprised of two groups of globins differing in their primary structures and state of aggregation. About six electrophoretically and chromatographically distinct monomeric Hbs which have Leu as the distal residue, and an equal number of polymeric Hbs which have the usual distal His, have been identified to date. Deconvolution of the electrospray ionization mass spectra (ESI-MS) of the Hbs and of their carbamidomethylated, reduced, and reduced/carbamidomethylated forms, using a maximum entropy-based approach (MaxEnt), showed the presence of at least 18 peaks attributable to monomer Hbs (14,500–15,200 Da) and an approximately equal number of polymer Hb peaks (15,500–16,400 Da). Although the ratio of the monomer to polymer components in pooled Hb preparations remained constant at 60:40, Hb from individuals had generally less than 6 monomer and 6 polymer components; 2 of the 19 individuals appeared to be deficient in polymer Hbs. Taking into account possible fragmentations of the known monomeric and polymeric globin sequences, we estimate conservatively that there are 10 monomeric and an equal number of polymeric Hbs, the majority comprising a single free Cys. Surprisingly, the calculated mass of the sequence deduced from the high-resolution monomer Hb crystal structures does not correspond to any of the observed masses. ESI-MS of the monomer Hb crystal revealed 11 components, of which 5, accounting for 67% of total, were related to the three major sequences GMG2–4. These findings underline the need for routine mass spectrometric characterization of all protein preparations. The complete resolution of the Glycera Hb ESI-MS using MaxEnt processing illustrates the power of this method to resolve complex protein mixtures.  相似文献   

9.
电喷雾萃取电离技术在蛋白质分析中的应用及展望   总被引:1,自引:0,他引:1  
电喷雾萃取电离技术(extractive electrospray ionization,EESI)是一种能灵敏地电离固体、液体、气体、黏性样品等复杂基体中痕量大分子和小分子的新兴软电离技术.在简要介绍EESI原理的基础上,着重综述其在蛋白质分析中的应用.与商品化质谱仪器配置的电喷雾电离源(electrospray ionization,ESI)不同,EESI能够在常压条件下最大程度地保留蛋白质在样品中的原始构象,并获得大量具有生物活性的蛋白质离子.由此可见,EESI及类似的技术在蛋白质芯片制备、高分辨率氢/氘交换质谱(蛋白质结构分析)、蛋白质计量等方面具有良好的应用前景.本文也对其发展趋势进行了展望.  相似文献   

10.
The primary structure of two proteins named major latex protein in Arabidopsis thaliana were characterized by matrix-assisted laser desorption/ionization time of flight mass spectrometer and Nano-electrospray ionization tandem mass spectrometry (nanoESI-MS/MS) after two-dimensional gel electrophoresis separation. We revealed that the two proteins with the same N termini and the N-terminal alanine were acetylated after methionine cleavage by fragmentation of three doubly charged peptides using a quadrupole-time of flight 2 tandem mass spectrometer. It was worth noting that one peptide with sodium addition and acetylation was sequenced. It is usually difficult to analyze the peptide sequence of sodium adduct due to the 22-Da increment. The two proteins are highly homologous, and both their N-terminal and C-terminal peptides were sequenced. Of the two proteins, gi|15236568 (spot A) appears only in the seeding stage and flower organ, but gi|15236566 (spot B) appears throughout the whole life of A. thaliana. The biological mechanism of the two proteins and the function of N-terminal acetylation remain to be elucidated. This study showed that ESI-MS/MS was a powerful tool for the characterization of N-terminal acetylation of proteins.  相似文献   

11.
To establish a new protocol for sensitive detection and structural characterization of sialyl oligosaccharides, their sensitivities and structural information from mass spectrometry and tandem mass spectrometry with FAB-, ESI-, and MALDI were evaluated in detail. Among these ionization methods, FAB-MS and FAB-MS/MS gave reproducible and predictable spectra carrying information on sequence and branching of sialyl oligosaccharides after derivatization with 2-aminopyridine (PA). With both positive and negative ion modes, their structural elucidation promises to be straightforward, MS/MS specta being measurable at as low as 200 pmol. Thus, this method consitutes a powerful tool for sensitive detection and structural characterization of limited quantities of sialyl oligosaccharides by FAB-MS and FAB-MS/MS.  相似文献   

12.

Background

Multilocus PCR coupled with electrospray ionization mass spectrometry (PCR/ESI-MS) is a new strategy for pathogen identification, but information about its application in fungal identification remains sparse.

Methods

One-hundred and twelve strains and isolates of clinically important fungi and Prototheca species were subjected to both rRNA gene sequencing and PCR/ESI-MS. Three regions of the rRNA gene were used as targets for sequencing: the 5′ end of the large subunit rRNA gene (D1/D2 region), and the internal transcribed spacers 1 and 2 (ITS1 and ITS2 regions). Microbial identification (Micro ID), acquired by combining results of phenotypic methods and rRNA gene sequencing, was used to evaluate the results of PCR/ESI-MS.

Results

For identification of yeasts and filamentous fungi, combined sequencing of the three regions had the best performance (species-level identification rate of 93.8% and 81.8% respectively). The highest species-level identification rate was achieved by sequencing of D1/D2 for yeasts (92.2%) and ITS2 for filamentous fungi (75.8%). The two Prototheca species could be identified to species level by D1/D2 sequencing but not by ITS1 or ITS2. For the 102 strains and isolates within the coverage of PCR/ESI-MS identification, 87.3% (89/102) achieved species-level identification, 100% (89/89) of which were concordant to Micro ID on species/complex level. The species-level identification rates for yeasts and filamentous fungi were 93.9% (62/66) and 75% (27/36) respectively.

Conclusions

rRNA gene sequencing provides accurate identification information, with the best results obtained by a combination of ITS1, ITS2 and D1/D2 sequencing. Our preliminary data indicated that PCR/ESI-MS method also provides a rapid and accurate identification for many clinical relevant fungi.  相似文献   

13.
The intracellular hemoglobin (Hb) of the marine polychaete Glycera dibranchiata is comprised of two groups of globins differing in their primary structures and state of aggregation. About six electrophoretically and chromatographically distinct monomeric Hbs which have Leu as the distal residue, and an equal number of polymeric Hbs which have the usual distal His, have been identified to date. Deconvolution of the electrospray ionization mass spectra (ESI-MS) of the Hbs and of their carbamidomethylated, reduced, and reduced/carbamidomethylated forms, using a maximum entropy-based approach (MaxEnt), showed the presence of at least 18 peaks attributable to monomer Hbs (14,500–15,200 Da) and an approximately equal number of polymer Hb peaks (15,500–16,400 Da). Although the ratio of the monomer to polymer components in pooled Hb preparations remained constant at 60:40, Hb from individuals had generally less than 6 monomer and 6 polymer components; 2 of the 19 individuals appeared to be deficient in polymer Hbs. Taking into account possible fragmentations of the known monomeric and polymeric globin sequences, we estimate conservatively that there are 10 monomeric and an equal number of polymeric Hbs, the majority comprising a single free Cys. Surprisingly, the calculated mass of the sequence deduced from the high-resolution monomer Hb crystal structures does not correspond to any of the observed masses. ESI-MS of the monomer Hb crystal revealed 11 components, of which 5, accounting for 67% of total, were related to the three major sequences GMG2–4. These findings underline the need for routine mass spectrometric characterization of all protein preparations. The complete resolution of the Glycera Hb ESI-MS using MaxEnt processing illustrates the power of this method to resolve complex protein mixtures.  相似文献   

14.
Electrospray ionization sources, used with triple quadrupole mass spectrometers from PE/Sciex (API III+), Micromass (Quattro II), and Finnigan (TSQ 7000), were modified with a 35-gauge stainless steel needle. The dimensions of the needle were 63 μm i.d. by 145 μm o.d. with variable length, depending on the specific instrument. This modification led to enhanced signal stability, improved signal/noise ratios, and lowered sample consumption for a wide range of peptides. Stable baselines were observed with flow rates in the range of 50 nL/min to 5 μL/min. An alternative design, based on a metal wire housed within a fused silica capillary, led to the most stable signals of all during infusion, but caused excessive peak broadening with capillary chromatography. The Finnigan interface was further modified with an external postcolumn addition tee, used in conjunction with capillary liquid chromatography columns of 30 and 50 μm internal diameter. The best results with the modified Finnigan interface were acquired using the 50-μm column at a flow rate of 150 to 200 nL/min.  相似文献   

15.
建立快速发现毛冬青三萜总皂苷主要吸收成分的外翻肠囊模型法,确定毛冬青总皂苷在体吸收的活性成分。采用大鼠外翻肠囊模型,收集毛冬青总皂苷给药后的肠囊液样品,采用电喷雾多级质谱快速、全面分析毛冬青三萜皂苷类成分在小肠的吸收。通过全扫描电喷雾多级质谱对肠囊液样品进行分析,并结合文献报道,确定皂苷的结构。在肠囊中检测到5个三萜皂苷,依次为:ilexoside O(5)、ilexoside K(4)、ilexoside J(3)、ilexoside E(8)和pedunculoside(13)。电喷雾多级质谱检测条件下,发现毛冬青总皂苷肠吸收的主要成分是三萜皂苷类成分,肠吸收的其它成分有待于进一步研究。  相似文献   

16.
The determination of the composition and purity of synthetic combinatorial libraries of free peptides requires analytical techniques that are especially suited for the challenging task of mixture analysis. Qualitative and semi-quantitive information on the composition of complex mixtures can be obtained by electrospray mass spectrometry with a maximum of reliability, accuracy, and fastness. Especially in combination with tandem mass spectrometry, contaminations with by-products (e.g., peptides with uncleaved side-chain protecting groups) can be easily revealed. Multiple sequence analysis based on Edman degradation allows a quantitative determination of the composition of libraries as well as the determination of coupling efficiencies during the synthesis of a library.  相似文献   

17.
8‐Prenylnaringenin (8PN) is a naturally occurring bioactive chiral prenylflavonoid found most commonly in the female flowers of hops (Humulus lupulus L.). A stereospecific method of analysis for 8PN in biological fluids is necessary to study the pharmacokinetic disposition of each enantiomer. A novel and simple liquid chromatographic‐electrospray ionization‐mass spectrometry (LC‐ESI‐MS) method was developed for the simultaneous determination of R‐ and S‐8PN in rat serum and urine. Carbamazepine was used as the internal standard (IS). Enantiomeric resolution of 8PN was achieved on a Chiralpak® AD‐RH column with an isocratic mobile phase consisting of 2‐propanol and 10 mM ammonium formate (pH 8.5) (40:60, v/v) and a flow rate of 0.7 mL/min. Detection was achieved using negative selective ion monitoring (SIM) of 8PN at m/z 339.15 for both enantiomers and positive SIM m/z at 237.15 for the IS. The calibration curves for urine were linear over a range of 0.01–75 µg/mL and 0.05–75 µg/mL for serum with a limit of quantification of 0.05 µg/mL in serum and 0.01 µg/mL in urine. The method was successfully validated showing that it was sensitive, reproducible, and accurate for enantiospecific quantification of 8PN in biological matrices. The assay was successfully applied to a preliminary study of 8PN enantiomers in rat. Chirality 26:419–426, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
Halogenation and nitration of biomolecules have been proposed as key mechanisms of host defense against bacteria, fungi, and viruses. Reactive oxidants also have the potential to damage host tissue, and they have been implicated in disease. In the current studies, we describe specific, sensitive, and quantitative methods for detecting three stable markers of oxidative damage: 3-chlorotyrosine, 3-bromotyrosine, and 3-nitrotyrosine. Our results indicate that electron capture-negative chemical ionization-gas chromatography/mass spectrometry (EC-NCI GC/MS) is 100-fold more sensitive than liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-MS/MS) for analyzing authentic 3-chlorotyrosine, 3-bromotyrosine, and 3-nitrotyrosine. Using an isotopomer of tyrosine to evaluate artifactual production of the analytes during sample preparation and analysis, we found that artifact generation was negligible with either technique. However, LC-MS/MS proved cumbersome for analyzing multiple samples because it required 1.5 h of run and equilibration time per analysis. In contrast, EC-NCI GC/MS required only 5 min of run time per analysis. Using EC-NCI GC/MS, we were able to detect and quantify attomole levels of free 3-chlorotyrosine, 3-bromotyrosine, and 3-nitrotyrosine in human plasma. Our results indicate that EC-NCI GC/MS is a sensitive and specific method for quantifying free 3-chlorotyrosine, 3-bromotyrosine, and 3-nitrotyrosine in biological fluids in a single, rapid analysis and that it avoids generating any of the analytes ex vivo.  相似文献   

19.
通过对几种基质测定含不同碱基的寡核苷酸的灵敏度及精确度的比较,发现用混合基质α-氰基4-羟基肉桂酸(α-Cyano)/3-羟基吡啶羧酸(3HPA)用于基质辅助激光解吸附电离飞行时间质谱中测定脱氧寡核苷酸,不仅能得到较好的分子离子峰,而且一些金属离子的加合物峰能得到有效的抑制,提高了测定的灵敏度。用3′-和5′-外切酶对脱氧寡核苷酸12-mer(5′-ATGCATATGCAT-3′)进行部分降解,再进行MALDI-TOF-MS分析,得到了完整的寡核苷酸的序列。  相似文献   

20.
Laser-ablation electrospray ionization (LAESI)-mass spectrometry imaging has been applied to contrasting plant organs to assess its potential as a procedure for performing in vivo metabolomics in plants. In a proof-of-concept experiment, purple/white segmented Phalaenopsis spp. petals were first analyzed using standard liquid chromatography-mass spectrometry analyses of separate extracts made specifically from the purple and white regions. Discriminatory compounds were defined and putatively annotated. LAESI analyses were then performed on living tissues, and these metabolites were then relocalized within the LAESI-generated data sets of similar tissues. Maps were made to illustrate their locations across the petals. Results revealed that, as expected, anthocyanins always mapped to the purple regions. Certain other (nonvisible) polyphenols were observed to colocalize with the anthocyanins, whereas others were found specifically within the white tissues. In a contrasting example, control and Cladosporium fulvum-infected tomato (Solanum lycopersicum) leaves were subjected to the same procedures, and it could be observed that the alkaloid tomatine has clear heterogeneous distribution across the tomato leaf lamina. Furthermore, LAESI analyses revealed perturbations in alkaloid content following pathogen infection. These results show the clear potential of LAESI-based imaging approaches as a convenient and rapid way to perform metabolomics analyses on living tissues. However, a range of limitations and factors have also been identified that must be taken into consideration when interpreting LAESI-derived data. Such aspects deserve further evaluation before this approach can be applied in a routine manner.Plants are a tremendously rich source of a myriad of structurally and chemically diverse metabolites (Rao and Ravishankar, 2002; D’Auria and Gershenzon, 2005). Many of these metabolites have a (partly) known function in the plant, although our knowledge of the vast majority of plant secondary metabolites is still sparse, or even nonexistent (Rao and Ravishankar, 2002; D’Auria and Gershenzon, 2005; Fernie, 2007). Plant metabolites are also of considerable importance in a crop context. Indeed, most plant species that have undergone domestication have become crops specifically because they provide us with a source of chemicals. This is not only true for all of our food crops, but also for many other species of genera such as Pyrethrum (insecticides), Jasminium and Santalum (perfumes), Hevea (rubber), Nicotiana and Cannabis (drugs), Linum (oils), Artemisia and Taxus (pharmaceuticals), Cinnamomum (flavors), etc. However, despite the importance of plants as a source of exploitable and essential biochemicals, we often still have remarkably limited knowledge of the relevant biosynthetic pathways, the genetics behind the key enzymes, and indeed when, why, and where these metabolites are produced and stored within the plant in question (Fernie, 2007; Sumner et al., 2011; Kueger et al., 2012).The field of plant metabolomics has grown tremendously since its recent inception earlier this century (Fiehn et al., 2000; Fiehn, 2002). As an untargeted approach to gain a broad overview of the complexity of plant metabolic composition, the technology has, in a short time, made significant inroads into helping expand our knowledge of plant biochemistry (Kueger et al., 2012; Etalo et al., 2013; Hunerdosse and Nomura, 2014; Meret et al., 2014). Typically, rich metabolomics data sets already provide us with a valuable means to generate hypotheses relating to plant metabolism, which then become the focus of further, more direct investigation (Quanbeck et al., 2012). New technologies are being developed, and especially, new data-mining strategies are being designed to allow us to look deep into plant metabolism without having first to rely on preconceptions. However, there are significant limitations to the application of the technology, which still remain the topic of much research effort.Robust sampling approaches for plant biochemical analysis generally entail taking reliably measurable amounts of plant material that will yield detectable levels of the chemical components. Although for metabolomics analyses, samples of just 50 mg can often suffice, obtaining a reliable sample with minimum biological variation generally requires an initial pooling of materials from which a representative sample is then taken. We therefore treat plant tissue as being homogeneous, but this is clearly a gross oversimplification (Fernie, 2007). Plants have been considered to be composed of roughly 40 different cell types, and a plant organ such as a leaf will generally contain up to 15 different cell types (Martin et al., 2001). Different morphologies also parallel different biochemical composition. Even directly neighboring cells within an organ, for example, a leaf epidermis that often comprises pavement, guard, trichome, and glandular hair cells, are formed from cells already known to have distinctly different biochemistries. Making an extract, for any kind of metabolomics or standard biochemical analysis, therefore entails that we immediately lose most intercellular and intertissue resolution. However, our knowledge is growing in that, in addition to known or expected biochemical differences between cell types, metabolite accumulation across organs can be far from uniform; indeed, islands of higher and lower concentrations of particular metabolites have been observed. This is of course immediately visible when the metabolites concerned can be seen by the naked eye; anthocyanins, for example, are often found to be heterogeneously distributed across leaves, fruits, and flower petals, creating clear phenotypic patterns. The same may also be true of other compounds that are invisible to the human eye but that, in contrast, may still be detectable by insects (e.g. through their fluorescence capacity; see http://www.naturfotograf.com/UV_flowers_list.html; Gronquist et al., 2001).In an ideal situation, we would like to be able to look directly into a plant tissue and be able to analyze the biochemical composition at the single cell level. Some so-called metabolite imaging technologies, usually based on mass spectrometric detection (mass spectrometry imaging [MSI]), have recently been introduced as a step toward this optimistic goal. Included here are matrix-assisted laser desorption/ionization (MALDI)-MSI, direct analysis in real time, and desorption electrospray ionization approaches (Cody et al., 2005; Cornett et al., 2007; Ifa et al., 2010). Early examples of MALDI-MSI have shown not only how primary metabolites such as sugars can be strongly localized within plant organs (Rolletschek et al., 2011), but also how the heterogeneous distribution of glucosinolates in Arabidopsis (Arabidopsis thaliana) can potentially determine grazing behavior of caterpillars (Shroff et al., 2008). This technology continues to improve, and recent exciting developments have resulted in cellular and subcellular imaging of metabolites at a resolution of 5 to 9 µm using MALDI (Korte et al., 2015). However, some key practical limitations of MALDI-based approaches are centered around the need to initially have to pretreat/dehydrate the tissue prior to applying the required matrix solution and the requirement of applying a vacuum during the biochemical analysis. Recently, a new technology has been introduced, laser ablation electrospray ionization (LAESI), which can potentially overcome some of these limitations, given that measurements can be made on fresh, living tissue without the need for a vacuum, thus creating the potential for high-resolution in vivo metabolomics.Here, we report on a set of experiments performed to assess both the potential and limitations of using LAESI-based MSI approaches to perform metabolic mapping on living plant tissues. While identifying a number of technological challenges that still need to be tackled, we were able to show that it is possible to use LAESI-MSI to map metabolites directly onto their known location (in this case, by exploiting the visibility of anthocyanins) as well as localize invisible metabolites in the same tissue. Results have revealed that in plants, for both petal and leaf tissue, the distribution of metabolites can be highly heterogeneous, and that this heterogeneity is of potential relevance to our gaining a broader, more detailed understanding of the overall molecular organization and phenotypic features of plant tissues. Furthermore, knowledge of the nature and extent of this heterogeneity has particular relevance and importance when trying to understand how a plant functions as a system, interacting with its environment. We predict that a higher resolution understanding of plant biochemistry will lead to an increasingly discriminatory capacity in our ability to define more accurately the spatial complexity of plant molecular organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号