首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA in intracellular Salmonella enterica serovar Typhimurium relaxes during growth in the acidified (pH 4–5) macrophage vacuole and DNA relaxation correlates with the upregulation of Salmonella genes involved in adaptation to the macrophage environment. Bacterial ATP levels did not increase during adaptation to acid pH unless the bacterium was deficient in MgtC, a cytoplasmic‐membrane‐located inhibitor of proton‐driven F1F0 ATP synthase activity. Inhibiting ATP binding by DNA gyrase and topo IV with novobiocin enhanced the effect of low pH on DNA relaxation. Bacteria expressing novobiocin‐resistant (NovR) derivatives of gyrase or topo IV also exhibited DNA relaxation at acid pH, although further relaxation with novobiocin was not seen in the strain with NovR gyrase. Thus, inhibition of the negative supercoiling activity of gyrase was the primary cause of enhanced DNA relaxation in drug‐treated bacteria. The Salmonella cytosol reaches pH 5–6 in response to an external pH of 4–5: the ATP‐dependent DNA supercoiling activity of purified gyrase was progressively inhibited by lowering the pH in this range, as was the ATP‐dependent DNA relaxation activity of topo IV. We propose that DNA relaxation in Salmonella within macrophage is due to acid‐mediated impairment of the negative supercoiling activity of gyrase.  相似文献   

2.
3.
《Free radical research》2013,47(8):954-961
Abstract

The objective of this study was to investigate the pattern of age-associated oxidative post-translational modifications in the skeletal muscles of a mammalian species and to address whether the modifications result in the loss of function of the oxidatively modified protein(s). Accordingly, proteins in the mitochondrial matrix of the hind limb of C57BL/6Nnia mice were examined for modifications by carbonylation—an established marker of oxidative post-translational modifications—by Western blotting using anti-2,4-dinitrophenyl antibodies and tritiated sodium borohydride methods. An age-associated increase in carbonylation of mitochondrial matrix proteins was observed, but not all proteins were equally susceptible. A 55 kDa protein, identified as the α-subunit of the F1 complex of ATP synthase (ATP phosphohydrolase [H+-transporting]), had approximately 17% and 27% higher levels of protein carbonyls in adult and old animals, respectively, in comparison to the young controls as estimated using tritiated sodium borohydride. In addition, an age-associated decline in its activity was observed, with approximately 9% and 28% decrease in the activity in the adult and old animals, respectively, in comparison to young controls. It may be concluded that such oxidative post-translational modifications and the resultant attenuation of the protein activity may contribute to the age-related energy loss and muscular degeneracy.  相似文献   

4.
The 40-MHz 31P nuclear magnetic resonance (nmr) spectrum of intact HeLa cells contains seven broad peaks with some detectable splittings. The linewidths were significantly broader than for those of cell-free systems such as cell extracts, indicating that the cellular environment is responsible for the unusual line broadening. Resolution of these peaks at 40 MHz is sufficient to make certain assignments and the relaxation parameters of some of the intracellular metabolites have been measured. The spin-lattice relaxation times (T1) ranged from 0.3 s for adenosine triphosphate (ATP) to about 3 s for inorganic phosphate (Pi) and monophosphate compounds. Nuclear Overhauser enhancements (NOE) were induced by proton irradiation with the possible exception of ATP. The relaxation parameters were compared to those of cell-free compounds and in all cases T1 and NOE were smaller for the intracellular metabolites. The relaxation parameters for ATP were affected the most. This behavior was mimicked with mixtures of cell-free metabolites containing paramagnetic ions. The larger change in both T1 and NOE of intracellular ATP could be accounted for by selective binding of paramagnetic ions. This phenomenon also explains some of the line broadening in the cell spectrum especially that of ATP. The spin-spin relaxation times (T2) of P1 and monophosphate compounds as measured by a pulse technique did not account for the observed linewidths. This is due to the presence of chemical shift envelopes arising from pH heterogeneity. All resonances were broader at 146 MHz because of the line broadening by paramagnetic ions and the presence of chemical shift envelopes. Other mechanisms of line broadening may also be significant. There was little difference in resolution of spectra at 40 and 146 MHz. Water proton linewidths and T2 values were measured for HeLa cells and for some minced tissue preparations. The water linewidth in tissue samples was broader than that in the cell suspension. The large linewidths in tissues arise mainly from chemical shift envelopes caused by magnetic field nonuniformity in the tissue samples. There appears to be a small chemical shift envelope from magnetic nonuniformity in HeLa cells as well. The 1H results on envelopes were extrapolated to 31P studies on cells and tissues. Possible methods for reducing linewidths arising from the various proposed broadening mechanisms were discussed.  相似文献   

5.
The aim of this study was to determine whether changes in the circulating thyroid hormone (TH) and brain synaptosomal TH content affected the relative levels of mRNA encoding different thyroid hormone receptor (TR) isoforms in adult rat brain. Northern analysis of polyA+RNA from cerebral cortex, hippocampus and cerebellum of control and hypothyroid adult rats was performed in order to determine the relative expression of all TR isoforms. Circulating and synaptosomal TH concentrations were determined by radioimmunoassay. Region-specific quantitative differences in the expression pattern of all TR isoforms in euthyroid animals and hypothyroid animals were recorded. In hypothyroidism, the levels of TRα2 mRNA (non-T3-binding isoform) were decreased in all brain regions examined. In contrast the relative expression of TRα1 was increased in cerebral cortex and hippocampus, whereas in cerebellum remained unaffected. The TRβ1 relative expression in cerebral cortex and hippocampus of hypothyroid animals was not affected, whereas this TR isoform was not detectable in cerebellum. The TR isoform mRNA levels returned to control values following T4 intraperitoneal administration to the hypothyroid rats. The obtained results show that in vivo depletion of TH regulates TR gene expression in adult rat brain in a region-specific manner. (Mol Cell Biochem 278: 93–100, 2005)  相似文献   

6.
Purpose: Eight A2AR variants are reported in humans while no A2AR isoforms in pigs. The aim of this study was to evaluate potential isoforms presence in cardiac pig tissue to better define possible involvement of A2AR in the cardiovascular pathophysiology.

Materials and methods: In adult male minipigs (n?=?4) left ventricular dysfunction (LVD) was induced by pacing at 200 bpm in the right ventricular (RV) apex. In these animals and in sham operated pigs (C-SHAM, n?=?4) cardiac tissue was collected from LV-septal wall (LV-SW)-close to pacing site-and from lateral (opposite) site (LV-OSW). A2AR specific primers, derived from Sus scrofa AY772412 sequence, were used for Real-Time PCR. The DNA was sequenced using the Sanger method. Histological analysis was also performed.

Results: In LV-SW of LVD minipigs the A2AR melting curves were characterized by a sharp peak between 87 and 91?°C (short isoform, 1–94?bp) on the right of the principal peak corresponding to a long A2AR isoform (GenBank: JQ229674.1) 1–213?bp. As for C-SHAM only one peak was observed in LV-OSW region of LVD animals. The short isoform had an alternative promoter region and a specific translated protein. Histology showed in LVD-LV-SW prominent Purkinje cells compared to LV-OSW and C-SHAM. No difference in A2AR expression was observed between LVD animals and C-SHAM although a slight decrease was observed in LVD-LV-OSW.

Conclusions: The presence of two different isoforms in the myocardium close to the insertion of pacing is suggestive of a differential state-specific expression of A2AR in cardiac tissue.  相似文献   

7.
PurposeThe use of MR contrast agents allows accurate diagnosis by exerting an influence on the longitudinal (T1) or transverse (T2) relaxation time of the surrounding tissue. In this study, we combined the use of iron oxide (IO) particles and nonspecific extracellular gadolinium chelate (Gd) in order to further improve the sensitivity and specificity of lesion detection.ProceduresWith a 7-Tesla scanner, pre-contrasted, IO-enhanced and dual contrast agent enhanced MRIs were performed in phantom, normal animals, and animal models of lymph node tumor metastases and orthotopic brain tumor. For the dual-contrast (DC) MRI, we focused on the evaluation of T2 weighted DC MRI with IO administered first, then followed by the injection of a bolus of gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA).ResultsBased on the C/N ratios and MRI relaxometry, the synergistic effect of coordinated administration of Gd-DTPA and IO was observed and confirmed in phantom, normal liver and tumor models. At 30 min after administration of Feridex, Gd-DTPA further decreased T2 relaxation in liver immediately after the injection. Additional administration of Gd-DTPA also immediately increased the signal contrast between tumor and brain parenchyma and maximized the C/N ratio to ?4.12 ± 0.71. Dual contrast MRI also enhanced the delineation of tumor borders and small lesions.ConclusionsDC-MRI will be helpful to improve diagnostic accuracy and decrease the threshold size for lesion detection.  相似文献   

8.
The inhibition of rat brain ATP: citrate oxaloacetate-lyase by L-glutamate   总被引:3,自引:2,他引:1  
Abstract—
  • 1 Among 16 amino acids tested only D- and L-glutamate were found to be specific inhibitors of citrate lyase from adult rat brain. Glutamate also inhibited citrate lyase from the liver of starved animals while it was without effect on lyase from those refed with carbohydrate. L-Glutamate did not inhibit the citrate lyase from brains of newborn rats.
  • 2 The inhibitory effect of L-glutamate was increased when the time of preincubation was prolonged, but only in the presence of both ATP and MgCl2. This time-dependent inhibition could be reversed by addition of high concentrations of ATP.
  • 3 L-Glutamate was without effect on Km and Vmax values for MgCl2. Excess of Mg2+ ions was indispensable for glutamate inhibition.
  • 4 L-Glutamate was shown to be competitive with respect to the ATP inhibitor of the lyase, with a Ki of 0.3mM.
  • 5 The mechanism of L-glutamate inhibition may be due to the reaction of a glutamate-Mg complex with the phosphorylated intermediary form of the lyase, resulting in the formation of a lyase-glutamate complex.
  • 6 The physiological significance of the inhibitory action of glutamate is discussed.
  相似文献   

9.
We detected very strong coupling between the oscillating concentration of ATP and the dynamics of intracellular water during glycolysis in Saccharomyces cerevisiae. Our results indicate that: i) dipolar relaxation of intracellular water is heterogeneous within the cell and different from dilute conditions, ii) water dipolar relaxation oscillates with glycolysis and in phase with ATP concentration, iii) this phenomenon is scale-invariant from the subcellular to the ensemble of synchronized cells and, iv) the periodicity of both glycolytic oscillations and dipolar relaxation are equally affected by D2O in a dose-dependent manner. These results offer a new insight into the coupling of an emergent intensive physicochemical property of the cell, i.e. cell-wide water dipolar relaxation, and a central metabolite (ATP) produced by a robustly oscillating metabolic process.  相似文献   

10.
P5 ATPases (ATP13A1 through ATP13A5) are found in all eukaryotes. They are currently poorly characterized and have unknown substrate specificity. Recent evidence has linked two P5 ATPases to diseases of the nervous system, suggesting possible importance of these proteins within the nervous system. In this study we determined the relative expression of mouse P5 ATPases in development using quantitative real time PCR. We have shown that ATP13A1 and ATP13A2 were both expressed similarly during development, with the highest expression levels at the peak of neurogenesis. ATP13A3 was expressed highly during organogenesis with one of its isoforms playing a more predominant role during the period of neuronal development. ATP13A5 was expressed most highly in the adult mouse brain. We also assessed the expression of these genes in various regions of the adult mouse brain. ATP13A1 to ATP13A4 were expressed differentially in the cerebral cortex, hippocampus, brainstem and cerebellum while levels of ATP13A5 were fairly constant between these brain regions. Moreover, we demonstrated expression of the ATP13A4 protein in the corresponding brain regions using immunohistochemistry. In summary, this study furthers our knowledge of P5-type ATPases and their potentially important role in the nervous system.  相似文献   

11.
31P-Fourier transform NMR spectroscopy (40.5 MHz) has been employed to investigate the mode of binding of adenosine 5′-triphosphate (ATP) to rabbit muscle G-actin in the presence of calcium in the pH range 6.5 to 10.5. Line width measurements reveal that the nucleotide binds tightest around pH=8.5. Spin lattice (T1) and spin-spin (T2) relaxation times of each of the three phosphorus atoms of bound ATP demonstrate the prime importance of Pβ and Pγ in ATP binding to G-actin through a calcium bridge.  相似文献   

12.
RationaleThe novel P2Y12 antagonist ticagrelor inhibits ADP-induced platelet aggregation more rapidly and more potently than clopidogrel. Clinical trials have revealed dyspnea and asymptomatic ventricular pauses as side effects of ticagrelor. The mechanism behind these side effects is not known, but it is plausible that they are mediated by adenosine.ObjectiveTicagrelor is known to increase adenosine concentrations by inhibiting red blood cell reuptake, but the potency of this effect may be too low to fully explain the adenosine related effects. The purpose of the present study was to determine whether ticagrelor has other effects on red blood cells (RBCs) that could contribute to explain the pleiotropic effects seen with ticagrelor treatment.Methods and resultsUsing a luciferase-based bioluminescence assay, we studied ATP release in human blood. Human RBCs responded to ticagrelor in vitro by releasing substantial amounts of ATP in a dose-dependent manner (IC50 14 μM). The rapid effect indicates release through membrane channels, which was supported by a depolarizing effect of ticagrelor and inhibition of ATP release by anion channel blockers.ConclusionIn conclusion, our data show that, in vitro, ticagrelor can induce ATP release from human RBCs, which is subsequently degraded to adenosine. Further studies are warranted to determine what role this mechanism may play in the clinical effects of ticagrelor.  相似文献   

13.
BackgroundMolybdenum, as a trace element, has various pharmacological effects, including antioxidant, antiviral, anti-allergic, anti-osteoporosis, anti-tumor, anti-inflammatory, anti-diabetic, anti-obesity, and free radical-scavenging activities. This study aimed at investigating the sodium molybdate impacts on cadmium chloride (CdCl2)-induced testicular toxicity in adult Wistar rats.MethodsThe impacts of oral administration of sodium molybdate (0.05, 0.1, 0.2, and 0.4 mg/kg) was evaluated in healthy and infertile animals. Animals were randomly assigned to nine groups, including healthy control, sodium molybdate alone, infertile control (3 mg/kg of CdCl2), and sodium molybdate plus CdCl2. Following 30 days of administration, animals were sacrificed for biochemical and histopathological assays.ResultsThe results indicated that administration of sodium molybdate to infertile rats significantly mitigated the cadmium impacts on sperm appearance, concentration, and motility parameters. Also, sodium molybdate reduced the production of malondialdehyde (MDA) and enhanced antioxidant enzymes activities in the testicular homogenates in rats; these findings were supported by histopathological examinations. Treatment with sodium molybdate significantly increased aquaporin-9 (AQP9) expression in the testicular tissues of infertile rats.ConclusionsThe current findings suggested that sodium molybdate performs as a strong protective agent from CdCl2-related testicular toxicity in rats.  相似文献   

14.
The formation of binary, ternary, and quaternary complexes between phosphofructokinase, manganese, and substrates has been demonstrated by use of pulsed nuclear magnetic resonance techniques. A Scatchard plot of the interaction of manganese with phosphofructokinase as determined by electron paramagnetic resonance shows two types of manganese binding sites. Phosphofructokinase seems to contain one or two of the metal binding sites with Kd = 20 μm and ?b ≦ 4, and perhaps, as many as 14 binding sites with Kd ~ 0.8 mm and ?b ≦ 12 ± 2 per enzyme. Addition of ATP or ADP results in a further enhancement of the relaxation rate indicating ternary complex formation. The concentration of ATP and ADP which results in half maximal change of enhancement is 30–100 μm and 80 μm, respectively. No change in the water proton relaxation rate was detected upon addition of fructose-6-P or fructose-1,6-bisphosphate. A quaternary complex was detected by proton relaxation measurements upon addition of fructose-6-P to a reaction mixture containing β, γ-methylene ATP, manganese, and enzyme with 50 μm fructose-6-P required to obtain the half maximal observed effect. This evidence for a quaternary complex is consistent with a sequential reaction mechanism for phosphofructokinase.  相似文献   

15.
To compare the potential of adult and fetal animals to repair articular cartilage, we investigated the early process after creating superficial defects in the femoral knee cartilage in rat models. In fetuses at 19 days of gestation, both chondrocytes and the extracellular matrix responded notably by 48 h after artificial injury. Staining patterns with safranin O revealed that, by 1 h after injury, some components of the extracellular matrix around the wound were modified, and the change spread from the limited region to the entire knee cartilage within 24 h. The chondrocytes in the area surrounding the wound transiently expressed increased level of c-fos from 1 h to 6 h. The wound remained 1 day after birth, i.e., 72 h after injury, but was completely repaired 10 days after birth. In contrast, neither visible responses nor transient c-fos expression was observed in 12-week-old adult articular cartilage 48 h after injury. We also examined the relationships between the intracellular Ca2+ concentration ([Ca2+]i) and the induction of c-fos expression in the cartilage. Applications of ATP or Ca2+ ionophore A23187, both of which increase [Ca2+]i, induced immediate expression of c-fos in primary cultured chondrocytes: 1 M ATP elicited an increase of [Ca2+]i in chondrocytes in fetal cartilage slices, but 1 mM was required in adult cartilage slices. Our findings show the presence of a signaling pathway that is apparently active in the repair of fetal but not adult articular cartilage and that involves the intercellular transfer of ATP, increase of [Ca2+]i, and expression of c-fos in cartilage.This study was supported in part by Health Sciences Research Grants for Research on Human Genome, Tissue Engineering and Food Biotechnology to M.O. from the Japanese Ministry of Health, Labor and Welfare  相似文献   

16.
Relaxation in extracted muscle fibers   总被引:2,自引:0,他引:2  
1. Ethylenediamine tetraacetic acid (EDTA) in low concentrations imitates all the known effects of the relaxation factor ("Marsh factor"). In extracted muscle fibers which have contracted in a solution containing adenosinetriphosphate (ATP), the addition of EBTA causes relaxation, the subsequent addition of CaCl2, contraction. 2. In fibers which have been briefly immersed in 5 MM EDTA, ATP causes rapid relaxation if Mg is also present. These fibers have essentially the same properties as briefly extracted fibers. Brief immersion into a solution containing CaCl2 restores at once the original condition. It is concluded that EDTA produces its action by firmly combining with bound Ca, thereby inactivating it. 3. In relaxed muscle fibers not only Ca, but also lowering the concentration of Mg below a critical level, causes contraction. In such fibers Mg in the lowest effective concentrations increases contraction, but the effect reverses above a certain concentration. 4. At 0° Mg in the presence of ATP has a relaxing effect without the relaxation factor. 5. The results indicate that Mg has two distinct effects in the presence of ATP. It causes contraction at low concentrations, but above a critical concentration its relaxing action prevails. The last of these effects is blocked by bound Ca. If the latter is inactivated by EDTA, Mg in sufficiently high concentrations causes relaxation. The action of the relaxation factor can similarly be explained by assuming that it acts as a complexing agent which inactivates bound Ca. 6. Previous evidence that the relaxed state depends on the formation of an enzymatically inactive ATP-protein complex was confirmed. It was found that PP in low concentrations strongly increases the relaxing effect of ATP in briefly extracted fibers.  相似文献   

17.
AimsVolatile anesthetics, such as isoflurane, reverse glucose-induced inhibition of pancreatic adenosine triphosphate-sensitive potassium (KATP) channel activity, resulting in reduced insulin secretion and impaired glucose tolerance. No previous studies have investigated the effects of intravenous anesthetics, such as propofol, on pancreatic KATP channels. We investigated the cellular mechanisms underlying the effects of isoflurane and propofol on pancreatic KATP channels and insulin secretion.Main methodsIntravenous glucose tolerance tests (IVGTT) were performed on male rabbits. Pancreatic islets were isolated from male rats and used for a perifusion study, measurement of intracellular ATP concentration ([ATP]i), and patch clamp experiments.Key findingsGlucose stimulus significantly increased insulin secretion during propofol anesthesia, but not isoflurane anesthesia, in IVGTT study. In perifusion experiments, both islets exposed to propofol and control islets not exposed to anesthetic had a biphasic insulin secretory response to a high dose of glucose. However, isoflurane markedly inhibited glucose-induced insulin secretion. In a patch clamp study, the relationship between ATP concentration and channel activity could be fitted by the Hill equation with a half-maximal inhibition of 22.4, 15.8, and 218.8 μM in the absence of anesthetic, and with propofol, and isoflurane, respectively. [ATP]i and single KATP channel conductance did not differ in islets exposed to isoflurane or propofol.SignificanceOur results indicate that isoflurane, but not propofol, decreases the ATP sensitivity of KATP channels and impairs glucose-stimulated insulin release. These differential actions of isoflurane and propofol on ATP sensitivity may explain the differential effects of isoflurane and propofol on insulin release.  相似文献   

18.
BackgroundMitochondria are the major source of ATP to power sperm motility. Phosphorylation of mitochondrial proteins has been proposed as a major regulatory mechanism for mitochondrial bioenergetics.MethodsSperm motility was measured by a computer-assisted analyzer, protein detection by western blotting, membrane potential by tetramethylrhodamine, cellular ATP by luciferase assay and localization of PKA by immuno-electron microscopy.ResultsBicarbonate is essential for the creation of mitochondrial electro-chemical gradient, ATP synthesis and sperm motility. Bicarbonate stimulates PKA-dependent phosphorylation of two 60 kDa proteins identified as Tektin and glucose-6-phosphate isomerase. This phosphorylation was inhibited by respiration inhibition and phosphorylation could be restored by glucose in the presence of bicarbonate. However, this effect of glucose cannot be seen when the mitochondrial ATP/ADP exchanger was inhibited indicating that glycolytic-produced ATP is transported into the mitochondria and allows PKA-dependent protein phosphorylation inside the mitochondria.ConclusionsBicarbonate activates mitochondrial soluble adenylyl cyclase (sAC) which catalyzes cAMP production leading to the activation of mitochondrial PKA. Glucose can overcome the lack of ATP in the absence of bicarbonate but it cannot affect the mitochondrial sAC/PKA system, therefore the PKA-dependent phosphorylation of the 60 kDa proteins does not occur in the absence of bicarbonate.General significanceProduction of CO2 in Krebs cycle, which is converted to bicarbonate is essential for sAC/PKA activation leading to mitochondrial membrane potential creation and ATP synthesis.  相似文献   

19.
Arylazido aminopropionyl ATP (ANAPP3), a photoaffinity analogue of adenosine 5′-triphosphate, photoactivated with visible light (+hv), specifically and irreversibly antagonized ATP contractions of the guinea pig vas deferens. ANAPP3 (30 μM) antagonized responses to exogenously added ATP in untreated, and in tissues pretreated with indomethacin (2.9 μM) and 6-(2-hydroxy-5-nitrobenzyl)-thio guanosine (10 μM). It was of interest to see if this pharmacological antagonist of ATP could be used to assess the validity of the purinergic nerve hypothesis by allowing a differentiation between, or proof of the identity of, responses to ATP and the non-adrenergic inhibitory transmitter in guinea pig stomach fundus. After photoactivation (+hv) in the organ bath and subsequent washout, ANAPP3 (30 and 100 μM) failed to antagonize relaxant responses to ATP (1.0 – 1000 μM) in fundic strips. In addition ANAPP3 failed to antagonize ATP-induced inhibition of the twitch response in electrically stimulated guinea pig ileum longitudinal muscle strips. We conclude that ANAPP3 does not antagonize all actions of ATP, which may limit its usefulness in assessing the above hypothesis. Results with this compound suggest that ATP excitatory receptors may differ from those mediating relaxation and other ATP actions.  相似文献   

20.
PurposeTo develop a phantom for methodological radiomic investigation on Magnetic Resonance (MR) images of female patients affected by pelvic cancer.MethodsA pelvis-shaped container was filled with a MnCl2 solution reproducing the relaxation times (T1, T2) of muscle surrounding pelvic malignancies. Inserts simulating multi-textured lesions were embedded in the phantom. The relaxation times of muscle and tumour were measured on an MR scanner on healthy volunteers and patients; T1 and T2 of MnCl2 solutions were evaluated with a relaxometer to find the concentrations providing a match to in vivo relaxation times. Radiomic features were extracted from the phantom inserts and the patients’ lesions. Their repeatability was assessed by multiple measurements.ResultsMuscle T1 and T2 were 1128 (806–1378) and 51 (40–65) ms, respectively. The phantom reproduced in vivo values within 13% (T1) and 12% (T2). T1 and T2 of tumour tissue were 1637 (1396–2121) and 94 (79–101) ms, respectively. The phantom insert best mimicking the tumour agreed within 7% (T1) and 24% (T2) with in vivo values. Out of 1034 features, 75% (95%) had interclass correlation coefficient greater than 0.9 on T1 (T2)-weighted images, reducing to 33% (25%) if the phantom was repositioned. The most repeatable features on phantom showed values in agreement with the features extracted from patients’ lesions.ConclusionsWe developed an MR phantom with inserts mimicking both relaxation times and texture of pelvic tumours. As exemplified with repeatability assessment, such phantom is useful to investigate features robustness and optimise the radiomic workflow on pelvic MR images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号