首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Phosphoramidite of (1,2,4-triazol-1-yl)-4-[(4-pyren-1-ylbutyl)amino]-5-(2-O-methyl-5-dimethoxytrityl-β-D-ribofuranosyl)pyrimidine has been synthesized, incorporated into polypyrimidine oligoaucleotides, and studied for thier triplex forming capacity.  相似文献   

2.

3-Amino-6-(β-D-ribofuranosyl)imidazo[4,5-c]pyrazole (2) was synthesized via an N-N bond formation strategy by a mononuclear heterocyclic rearrangement (MHR). A series of 5-amino-1-(5-O-tert-butyldimethylsilyl-2,3-O-isopropylidene-β-D-ribofuranosyl-4-(1,2,4-oxadiazol-3-yl)imidaz-oles (6a-d), with different substituents at the 5-position of the 1,2,4-oxadiazole, were synthesized from 5-amino-1-(β-D-ribofuranosyl)imidazole-4-carboxamide (AICA Ribose, 3). It was found that 5-amino-1-(5-O-tert-butyldimethylsilyl-2,3-O-isopropylidene-β-D-ribofuranosyl)-4-(5-methyl-1,2,4-oxadiazol-3-yl)imidazole (6a) underwent the MHR with sodium hydride in DMF or DMSO to afford the corresponding 3-acetamidoimidazo[4,5-c]pyrazole nucleoside(s) (7b and/or 7a) in good yields. A direct removal of the acetyl group from 3-acetamidoimidazo[4,5-c]pyrazoles under numerous conditions was unsuccessful. Subsequent protecting group manipulations afforded the desired 3-amino-6-(β-D-ribofuranosyl)imidazo[4,5-c]pyrazole (2) as a 5:5 fused analog of adenosine (1).  相似文献   

3.
Abstract

Chemical modification of the 4-nitrile group in 5-amino-1-(2,3,5-tri-O-benzyl-β-D-ribofuranosyl)pyrazole-4-carbonitrile (1) afforded 5-amino-4-(5-methyl-1,2,4-oxadiazol-3-yl)-1-(2,3,5-tri-O-benzyl-β-D-ribofuran osyl)pyrazole (3). The methylation of 3, via a three step procedure, gave 5-methylamino-4-(5-methyl-1,2,4-oxadiazol-3-yl)-1-(2,3,5-tri-O-benzyl-β-D-ribofuranosyl)pyrazole (3a). The mononuclear heterocyclic rearrangement (m.h.r) of 3 and 3a, provided a convenient route to the novel azapentalene adenosine analogs 3-amino-6-(β-D-ribofuranosyl)pyrazolo[3,4-c]pyrazole (6) and 3-amino-1-methyl-6-(β-D-ribofuranosyl)pyrazolo[3,4-c]pyrazole (6a), respectively. Compound 6 exhibited no cytotoxicity when screened in vitro against either mouse L1210 leukemic cells or human foreskin fibroblasts. Nor was it active against human cytomegalovirus. Compound 6a was designed and prepared to investigate the possibility that the lack of biological activity of 6 might be due to annular tautomerization limiting the ability of 6 to serve as a substrate for the activating enzyme adenosine kinase. This hypothesis was neither supported nor disproved by the results, as compound 6a was also inactive in both the antiproliferative and antiviral test systems.  相似文献   

4.

2,5,6-Trichloro-1-(β-D-ribofuranosyl)benzimidazole (TCRB), 2-bromo-5,6-dichloro-1-(β-D-ribofuranosyl)benzimidazole (BDCRB) and 2-benzylthio-5,6-dichloro-1-(β-D-ribofuranosyl)benzimidazole (BTDCRB) are benzimidazole nucleosides that exhibit strong and selective anti-HCMV activity. Polyhalogenated indole C-nucleosides were prepared as 1-deaza analogs of the benzimidazole nucleosides TCRB and BDCRB. A mild Knoevenagel coupling reaction between an indol-2-thione and a ribofuranose derivative was developed for the synthesis of 2-benzylthio-5,6-dichloro-3-(β-D-ribofuranosyl)indole (12). 3-(β-D-ribofuranosyl)-2,5,6-trichloroindole (16) was prepared from 12 in 4 steps. A Lewis acid-mediated glycosylation method was then developed to prepare the targeted 2-haloindole C-nucleoside 16 stereoselectively in four steps from the corresponding 2-haloindole aglycons. Only 12 was active against HCMV but it also was somewhat cytotoxic.  相似文献   

5.
Abstract

The synthesis of (-)-3-[(1S,2S,3R,4R)-2,3-dihydroxy-4-(hydroxmethyl) cyclopentan-1-yl]-1H-pyrazolo[4,3-c]pyridme-4,6(5H,7H)-dione 3 was accomplished via enantiomerically pure carbocyclic 5-(β-D-ribofuranosyl)tetrazole 4.  相似文献   

6.
The adduct 3-β-D-ribofuranosyl-3,7,8,9-tetrahydropyrimido[1,2-i]purin-8-ol (2), obtained from adenosine and epichlorohydrin, underwent ring fission at basic conditions. The initial ring-opening took place at C2 of the pyrimidine unit resulting in 2-(5-amino-1-β-D-ribofuranosyl-imidazol-4-yl)-1,4,5,6-tetrahydropyrimidin-5-ol (3). Also the tetrahydropyrimidine ring of 3 could be opened resulting in 5-amino-1-(β-D-ribofuranosyl)-imidazole-4-(N-3-amino-2-hydroxyl-propyl)-carboxamide (4). In hot acid conditions, 2 was both deglycosylated and ring-opened yielding 2-(5-amino-imidazol-4-yl)-1,4,5,6-tetrahydropyrimidin-5-ol (7) as the final product. When reacting 3 with CS2 or HNO2 ring-closure took place and 3-β-D-ribofuranosyl-3,4,7,8,9-pentahydropyrimido[1,2-i]purin-8-ol-5-thione (5), and 3-β-D-ribofuranosyl-imidazo[4,5-e]-3,7,8,9-tetrahydropyrimido[1,2-c][1,2,3]triazine-8-ol (6), respectively, were obtained. Also, the pyrimidine ring of the epichlorohydrin adduct with adenine, 10-imino-5,6-dihydro-4H,10H-pyrimido[1,2,3-cd]purin-5-ol (10), underwent ring fission and the product was identified as 3-hydroxy-1,2,3,4-tetrahydroimidazo[1,5-a]pyrimidine-8-carboximidamide (11).  相似文献   

7.
Abstract

The synthesis and computational studies of 5-(4-thio-β-D-ribofuranosyl)-furan-3-carboxamide (furanthiofurin) and 5-(4-thio-β-D-ribofuranosyl)thiophene-3-carboxamide (thiophenthiofurin) are reported.  相似文献   

8.
Abstract

5-Ethynyl-1-(2-deoxy-β-D-ribofuranosyl)imidazole-4-carbonitrile (4) and -carboxamide (5) and 5-ethynyl-1-(5-deoxy-β-D-ribofuranosyl)imidazole-4-carbonitrile (11) and -carboxamide (12) have been synthesized from the corresponding 5-iodo derivatives 2 and 7 by a palladium-catalyzed cross-coupling reaction with (tri-methylsilyl)acetylene. The aglycons, 5-ethynylimidazole derivatives 14 and 15 were synthesized by the hydrolytic cleavage of the corresponding nucleosides. The antileukemic activity of these nucleosides and base analogues are also described.  相似文献   

9.
Abstract

A synthesis of 9-(2-deoxy-β-D-ribofuranosyl)purine-2-thione was performed by desulfurization of 2′-deoxy-6-thioguanine to give 2-amino-9-(2-deoxy-β-D-ribofuranosyl)purine, diazotization with chloride replacement to give 2-chloro-9-(2-deoxy-β-D-ribofuranosyl)purine, and the replacement of chloride with sulfur using thiolacetic acid and deacetylation.  相似文献   

10.
Abstract

The N-3- and N-2-methylated analogs of several 5-substituted 2 amino-7-(β-D-ribofuranosyl)pyrrolo[2,3-d]pyrimidin-4-ones were synthesized from 5-cyano-2,4-dichloro-7-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)pyrrolo[2,3-d]pyrimidine (10). These compounds are analogs of nucleoside Q that are methylated in a manner similar to some of the naturally occurring methylated guanosines.

  相似文献   

11.
Abstract

In this article, we describe the synthesis of 5-nitro-1-(2-deoxy-α-D-erythro-pentofuranosyl)cytosine (), 5-nitro-1-(2-deoxy-β-D-erythro-pentofuranosyl)cytosine (), 5-amino-1-(2-deoxy-α-D-erythro-pentofuranosyl)cytosine (), 5-nitro-1- (2-deoxy-β-D-erythro-pentofuranosyl)cytosine (), 5-nitro-1-(2,3-dideoxy-β- D-ribofuranosyl)uracil (), 5-amino-1-(2,3-dideoxy-α,β-D-ribofuranosyl)uracil (7), 5-nitro-1-(2,3-dideoxy-α,β-D-ribofuranosyl)cytosine (8) and 5-amino-1-(2,3-dideoxy-β-D-ribofuranosyl)cytosine (). The prepared compounds were tested for their activity against HIV and HBV viruses, but they did not show significant activity.  相似文献   

12.
Abstract

3′,5′-Di-O-benzoyl-2′-O-(tetrahydropyran-2-yl)uridine and 3′,5′ -di-O-benzoyl-N 2-isobutyryl-2′-O-(tetrahydropyran-2-yl)guanosine are converted into-N 3-anisoyl-2′-O-(tetrahydropyran-2-yl)uridine (less and more polar diastereoisomers in 37% and 42% yields, respectively) and O 6-diphenyl carbamoylN 2-isobutyryl-2′-O-(tetrahydropyran-2-yl)- guanosine (less and more polar diastereoisomers in 15% and 59% yields, respectively), respectively, by N 3-anisoylation and O 6-diphenylcarbamoylation, followed by 3′,5′-di-O-debenzoylation.  相似文献   

13.
Abstract

We have synthesized 2-amino-6,8-difluoro-9-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)purine (3) from 2-amino-6,8-dichloro-9-(2,3,5-tri-O-acetyl-ß-D-ribofuranosyl)purine (1) in a two-step procedure. The reaction of 3 with anhydrous ammonia in dry 1,2-dimethoxyethane gave 2,8-diamino-6-fluoro-9-(2,3,5-tri-O-acetyl-ß-D-ribofuranosyl)purine (4) in 64.1% yield. Compound 4 was deaminated with t-butylnitrite in tetrahydrofuran to give 2-amino-6-fluoro-9-(2,3,5-tri-O-acetyl-ß-D-ribofuranosyl)purine (6). The 1H, 19F, and 13C NMR spectral data were determined and evaluated for each of the compounds.  相似文献   

14.
Abstract

Chemical syntheses of 1-(2-deoxy-β-D-ribofuranosyl)lumazines and isopterins as well as 8-(2-deoxy-β-D-ribofuranosyl)-4-amino-7(8H)pteridones and -isoxanthopterins have been developed to make the structural analogs of the naturally occurring 2′-deoxyribonucleosides in the pteridine series available. The corresponding phosphoramidites have been used in machine-aided solid-support syntheses leading to new types of fluorescence labeled oligonucleotides. The effects of the various fluorophors on duplex formation and as labels for enzyme reactions is demonstrated.  相似文献   

15.
Abstract

Acid catalysed transformations of (6S)-6,5′-anhydro-6-hydroxy-1-(2′,3′-O-isopropylidene-β-D-ribofuranosyl)hexahydropyrimidine-2-thione are studied. (6R)-6,2′-anhydro-6-hydroxy-1-(α-D-ribofuranosyl)hexahydropyrimidine-2-thione was formed as a thermodynamically stable product. Two intermediates, (6S)-6,5′-anhydro-6-hydroxy-1-(β-D-ribofuranosyl)hexahydropyrimidine-2-thione and 6-hydroxy-1-(D-ribosyl)hexahydropyrimidine-2-thione and products of cleavage of glycosidic bond were identified in the reaction mixtures. Results of X-ray structural determination of the synthesised nucleosides are presented.  相似文献   

16.
Abstract

Efficient syntheses of 2′-bromo-2′-deoxy-3′,5′-O-TPDS-uridine (5a) and 1-(2-bromo-3,5-O-TPDS-β-D-ribofuranosyl)thymine (5b) from uridine and 1-(β-D-ribofuranosyl)thymine are described, respectively. The key step is a treatment of 3′,5′-O-TPDS-O2,2′-anhydro-1-(β-D-ardbinofuranosyl)uracil (4a) and -thymine (4b) with LiBr in the presence of BF3-OEt2 in 1,4-dioxane at 60°C to give 5a and 5b in 98%, and 96% yield, respectively.

  相似文献   

17.
Abstract

O6-(4-Nitrophenyl)inosine (la), O6 -(4-nitrophenyl)guanosine (1c) and O6 -(4-methylumbelliferonyl)inosine (2) were obtained by reaction of 6-chloro-9-(β-D-ribofuranosyl)purine (3a) or 2-amino-6-chloro-9-(β-D-ribofuranosyl)purine (3c) with sodium salts of 4-nitrophenol or 4-methylumbelliferone in N,N-dimethylformamide. Similarly, 6-chloro-9-(β-D-2,3-isopropylideneribofuranosyl)purine (3b) was transformed to 2′,3′-O-isopropylidene-O6-(4-nitrophenyl)inosine (1b). Deprotection of 1b with CF3COOH gave compound la and O6 -(4-nitrophenyl)hypoxanthine (4). Compounds 1a and 1c are substrates for adenosine deaminase releasing 4-nitrophenol which is readily detected visually or spectrophotomemcally. Rate and extent of hydrolysis of la are significantly increased in the presence of purine nucleoside phosphorylase but xanthine oxidase has no influence. A potential fluorogenic analogue 2 is not a substrate for adenosine deaminase.

  相似文献   

18.
Abstract

A novel conversion of ethyl 5-amino-1 -(2, 3, 0-isopropylidene-β-D-ribofuranosyl)imidazole-4-carboxylate (2) to the corresponding 2, 5'-cyclo derivative (4) occurs with alkaline hypobromite or N-chlorosuccinimide and alkali.  相似文献   

19.
Abstract

Ethyl 1-methyl-4-(β-D-ribofuranosylamino)imidazole-5-carboxylate 8 was synthesized from ethyl 5-amino-1-(5-O-trityl-2,3-O-isopropylidene-β-D-ribofuranosyl)imidazole-4-carboxylate 4 by quaternization and subsequent base-catalysed ring-opening and closure.  相似文献   

20.
Abstract

Several 4- or 5-monosubstituted and 4,5-disubstituted 1,2,3-triazole analogues of the anti-HIV-1 lead compound [1-[2′,5′-bis-O-(tert-butyldimethylsilyl)-β-D-ribofuranosyl]thymine]-3′-spiro-5″-(4″-amino-1″,2″-oxathiole-2″,2″-dioxide) (TSAO-T) have been prepared and evaluated for their inhibitory effect against HIV-1-induced cytopathicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号