首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diethyldithiocarbamate is an antimutagen and repressed the activation of promutagens by plant systems. Earlier work implicated the involvement of tobacco cell (TX1) peroxidases in the plant cell activation of aromatic amines. We now present data that diethyldithiocarbamate represses the activation of 2-aminofluorene and m-phenylenediamine by inhibiting intracellular TX1 peroxidases under in vivo conditions. Concentrations of diethyldithiocarbamate that caused a 50% repression of TX1 cell activation of 2-aminofluorene and m-phenylenediamine also induced a 50% inhibition of TX1 cell peroxidase activity. Diethyldithiocarbamate in a concentration range between 25 and 500 microM directly inhibited peroxidase activity in TX1 cell homogenates in a concentration-dependent manner. Similar results were observed with purified horseradish peroxidase. The kinetics of peroxidase activity were studied in homogenates from control cells and cells treated with 750 microM and 25 mM diethyldithiocarbamate. There was no significant difference among the Km values among the three groups with a mean (+/- standard error) Km of 2.58 +/- 0.23 mM. However, the Vmax differed from 4.02 to 2.12 nmoles tetraguaiacol/min/micrograms protein, in the control and in the 25 mM diethyldithiocarbamate treatment group, respectively. These data indicate that diethyldithiocarbamate is a non-competitive inhibitor of TX1 cell peroxidase.  相似文献   

2.
We previously demonstrated using a bacterial system that the antigenotoxic activity of the anthraquinone compounds purpurin and alizarin was due to the suppression of microsomal enzyme activity involved in the activation of mutagens. In the present study we determined the effect of purpurin and alizarin on (i) MeIQx-DNA-adduct formation in mouse tissues and (ii) the activity of phases I and II enzymes in liver fractions, the liver being the target tissue of MeIQx. The amount of MeIQx-DNA adduct formed was determined using 32P-postlabeling methods. Methoxyresorufin-O-demethylase (MROD) and ethoxyresorufin-O-deethylase (EROD) enzyme activities, which reflect CYP 1A activity, were measured as markers for phase I enzymes, and UDP-glucuronyltransferase (UGT) and glutathione S-transferase (GST) activities were determined as markers for phase II enzymes. Mice fed with a diet containing 0.5% purpurin for 3 days prior to MeIQx administration had 70% fewer MeIQx-DNA adducts in the lung and kidney, and fewer DNA adducts (insignificant, statistically) in the liver compared with mice fed a diet lacking purpurin. MROD and EROD activities in the liver of these mice increased six- and eight-fold, respectively, and were higher than those determined for the control mice within 1 day following commencement of purpurin treatment. These elevated activities were maintained during treatment and declined immediately following removal of purpurin from the diet. GST and UGT activities gradually increased 2.5- and 3-fold, respectively, following purpurin treatment, and were maintained at significantly high levels even after purpurin administration ceased. Alizarin did not significantly affect DNA-adduct formation and enzyme activity, except in the case of UGT. Taken together, our results show that purpurin reduced MeIQx-DNA-adduct formation by maintaining elevated phase II enzyme activities, thereby facilitating accelerated excretion of MeIQx.  相似文献   

3.
We previously demonstrated using a bacterial system that the antigenotoxic activity of the anthraquinone compounds purpurin and alizarin was due to the suppression of microsomal enzyme activity involved in the activation of mutagens. In the present study we determined the effect of purpurin and alizarin on (i) MeIQx–DNA-adduct formation in mouse tissues and (ii) the activity of phases I and II enzymes in liver fractions, the liver being the target tissue of MeIQx. The amount of MeIQx–DNA adduct formed was determined using 32P-postlabeling methods. Methoxyresorufin-O-demethylase (MROD) and ethoxyresorufin-O-deethylase (EROD) enzyme activities, which reflect CYP 1A activity, were measured as markers for phase I enzymes, and UDP–glucuronyltransferase (UGT) and glutathione S-transferase (GST) activities were determined as markers for phase II enzymes. Mice fed with a diet containing 0.5% purpurin for 3 days prior to MeIQx administration had 70% fewer MeIQx–DNA adducts in the lung and kidney, and fewer DNA adducts (insignificant, statistically) in the liver compared with mice fed a diet lacking purpurin. MROD and EROD activities in the liver of these mice increased six- and eight-fold, respectively, and were higher than those determined for the control mice within 1 day following commencement of purpurin treatment. These elevated activities were maintained during treatment and declined immediately following removal of purpurin from the diet. GST and UGT activities gradually increased 2.5- and 3-fold, respectively, following purpurin treatment, and were maintained at significantly high levels even after purpurin administration ceased. Alizarin did not significantly affect DNA-adduct formation and enzyme activity, except in the case of UGT. Taken together, our results show that purpurin reduced MeIQx–DNA-adduct formation by maintaining elevated phase II enzyme activities, thereby facilitating accelerated excretion of MeIQx.  相似文献   

4.
We have recently characterized the major hydroperoxide-reducing enzyme of human plasma as a glutathione peroxidase (Maddipati, K. R., Gasparski, C., and Marnett, L. J. (1987) Arch. Biochem. Biophys. 254, 9-17). We now report the purification and kinetic characterization of this enzyme. The purification steps involved ammonium sulfate precipitation, hydrophobic interaction chromatography on phenyl-Sepharose, anion exchange chromatography, and gel filtration. The purified peroxidase has a specific activity of 26-29 mumol/min/mg with hydrogen peroxide as substrate. The human plasma glutathione peroxidase is a tetramer of identical subunits of 21.5 kDa molecular mass as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and is different from human erythrocyte glutathione peroxidase. The plasma peroxidase is a selenoprotein containing one selenium per subunit. Unlike several other glutathione peroxidases this enzyme exhibits saturation kinetics with respect to glutathione (Km for glutathione = 4.3 mM). The peroxidase exhibits high affinity for hydroperoxides with Km values ranging from 2.3 microM for 13-hydroperoxy-9,11-octadecadienoic acid to 13.3 microM for hydrogen peroxide at saturating glutathione concentration. These kinetic parameters are suggestive of the potential of human plasma glutathione peroxidase as an important regulator of plasma hydroperoxide levels.  相似文献   

5.
A comparative kinetic study on the poly(gallic acid disulfide) (poly(DSGA)) inhibition of the iodide ion oxidation and on the 2-hydroxy-3,5-di-tert-butyl-N-phenylaniline (butaminophene) inhibition of 3,3',5,5'-tetramethylbenzidine (TMB) oxidation involving human thyroid peroxidase (hTPO) and horseradish peroxidase (HRP) was performed. The inhibition processes were characterized with the inhibition constants Ki and stoichiometric inhibition coefficients f, indicating the number of radical particles perishing on one inhibitor molecule. In the case of poly(DSGA), the Ki values for the I- oxidation were 0.60 and 0.04 microM, and the coefficients f were 13.6 and 16.5 for hTPO and HRP, respectively, which evidences the regeneration and high effectiveness of the polymeric inhibitor. In the case of butaminophene, the Ki values for TMB oxidation were 38 and 46 microM for hTPO and HRP, respectively. The coefficients f were 1.33 and 1.47, respectively, to reveal that butaminophene does not regenerate. The inhibition mechanisms for I- and TMB oxidation involving the two peroxidases are discussed.  相似文献   

6.
Sea urchin sperm contain a phenylhydrazine-sensitive peroxidase that is believed to use hydrogen peroxide produced by the fertilized egg to reduce sperm fertility and thereby assist in the prevention of polyspermy. Strongylocentrotus purpuratus sperm were treated initially with hypotonic phosphate buffer (pH 7.0) to remove catalase and then extracted with 0.5% Triton X-100 in 0.5 M acetate buffer (pH 5.0). Peroxidase activity in this detergent extract was assayed using 3,3',5,5'-tetramethyl benzidine (TMB) as oxidizable substrate. Kinetic studies showed that the Km for TMB is 250 microM. Benzohydroxamic acid and phenylhydrazine are known to be competitive inhibitors of a variety of plant and animal peroxidases. These substances were found to competitively inhibit the sea urchin sperm peroxidase: for benzohydroxamic acid, Ki = 51.2 microM, mean inhibitory dose (ID50) = 146.7 microM; for phenylhydrazine, Ki = 201 nM, ID50 = 303 nM. These findings indicate that the biochemical properties of the sea urchin sperm peroxidase resembles those of peroxidases found in somatic tissues where oxygen radicals are produced by phagocytes to kill bacteria and support our hypothesis that the sperm peroxidase has a functional role in the prevention of polyspermy during fertilization.  相似文献   

7.
Peritoneal macrophages from C57BL/6 mice were activated in vitro with various peroxidases and their cytotoxic activity toward 3T12 cells was determined. Destruction of 3T12 cells by macrophages stimulated with horseradish peroxidase, lactoperoxidase, and microperoxidase was observed at peroxidase concentrations as low as 9, 1.6, and 200 nM, respectively. A 50% cytotoxic effect was obtained at peroxidase concentrations of 0.9, 1.6, and 1.5 microM, respectively. The macrophage-stimulating activity of horseradish peroxidase was not destroyed by boiling. This, together with the high activity of microperoxidase, indicates that the macrophage-stimulating activity of the peroxidases is probably associated with the heme portion of the enzymes. On a molar basis the peroxidases are much less potent macrophage activators than interferon (alpha + beta) and endotoxin. Nevertheless, our data clearly indicate that peroxidases are a group of enzymes capable of inducing macrophage activation, resulting in cytostatic and/or cytocidal activity.  相似文献   

8.
Extracellular secretion of lignin peroxidase from Pycnoporus sanguineus MTCC-137 in the liquid culture growth medium amended with lignin containing natural sources has been shown. The maximum secretion of lignin peroxidase has been found in the presence of saw dust. The enzyme has been purified to homogeneity from the culture filtrate of the fungus using ultrafiltration and anion exchange chromatography on DEAE-cellulose. The purified lignin peroxidase gave a single protein band in sodium dodecylsulphate polyacrylamide gel electrophoresis corresponding to the molecular mass 40 kDa. The K(m)(, kcat) and k(cat)/K(m) values of the enzyme using veratryl alcohol and H2O2 as the substrate were 61 microM, 2.13 s(-1), 3.5 x 10(4) M(-1) s(-1) and 71 microM, 2.13 s(-1), 3.0 x 10(4) M(-1) s(-1) respectively at the optimum pH of 2.5. The temperature optimum of the enzyme was 25 degrees C.  相似文献   

9.
Myeloperoxidase (MPO) derived from milk leukocytes and lactoperoxidase (LPO) secreted from the mammary gland have been identified previously in human colostrum. These peroxidases are known to play host defensive roles through antimicrobial activity. The goals of this study were to measure the peroxidase activity in mature human milk and to characterize the enzyme responsible for the activity. As determined using 3,3',5,5'-tetramethylbenzidine as substrate, whey prepared from human milk samples obtained 1 and 5 months postpartum showed levels of peroxidase activity equivalent to 0.13 +/- 0.18 and 0.24 +/- 0.21 microg/mL bovine LPO (bLPO; n = 13), respectively. Whey from early milk was fractionated into two peaks of peroxidase activity by cation-exchange chromatography; the peroxidase in the first peak was sensitive to dapsone, which is an inhibitor of LPO, whereas the second peroxidase was not. Whey from mature milk showed only the first peak. Purified bLPO and MPO showed chromatographic behaviors that were similar to the first and second peaks, respectively. The dapsone-sensitive peroxidase from mature milk was further purified (952-fold from whey) by hydrophobic interaction chromatography. This preparation showed two bands with molecular masses of 80 and 90 kDa by polyacrylamide gel electrophoresis and immunoblotting using an antibody against bLPO. After deglycosylation, two distinct proteins with lower molecular weights were observed. Amino acid sequencing indicated that both of these proteins are LPO. These results provide evidence that LPO is present in mature human milk and that it is responsible for most of the peroxidase activity in mature milk.  相似文献   

10.
Peroxidase activity was assayed with different electron donors (guaiacol, ascorbate, syringaldazine) in the intercellular fluid of Sedum album L. leaves after ozone exposure. Anionic and cationic peroxidases were separated and purified by high performance ion-exchange and gel permeation chromatography. Both isoperoxidases were tested as regards their molecular weight and apparent kinetic constants with different substrates. Ascorbate peroxidase activity was rapidly stimulated after ozone exposure, whereas syringaldazine peroxidase activity reached its maximum 24 h later. Increases in ascorbate and syringaldazine peroxidase activities occurred simultaneously with increases in cationic and anionic peroxidase activities, respectively. Apparent Km values indicate a high affinity of cationic peroxidases for ascorbate and of anionic peroxidases for syringaldazine. The metabolic role of this balance between cationic and anionic peroxidases after ozone exposure is discussed.  相似文献   

11.
A basic heme peroxidase isoenzyme (AKPC) has been purified to homogeneity from artichoke flowers (Cynara scolymus L.). The enzyme was shown to be a monomeric glycoprotein, M(r)=42300+/-1000, (mean+/-S.D.) with an isoelectric point >9. The native enzyme exhibits a typical peroxidase ultraviolet-visible spectrum with a Soret peak at 404 nm (epsilon=137,000+/-3000 M(-1) cm(-1)) and a Reinheitzahl (Rz) value (A(404nm)/A(280nm)) of 3.8+/-0.2. The ultraviolet-visible absorption spectra of compounds I, II and III were typical of class III plant peroxidases but unlike horseradish peroxidase isoenzyme C, compound I was unstable. Resonance Raman and UV-Vis spectra of the ferric form show that between pH 5.0 and 7.0 the protein is mainly 6 coordinate high spin with a water molecule as the sixth ligand. The substrate-specificity of AKPC is characteristic of class III (guaiacol-type) peroxidases with chlorogenic and caffeic acids, that are abundant in artichoke flowers, as particularly good substrates at pH 4.5. Ferric AKPC reacts with hydrogen peroxide to yield compound I with a second-order rate constant (k(+1)) of 7.4 x 10(5) M(-1) s(-1) which is significantly slower than that reported for most other class III peroxidases. The reaction of ferric and ferrous AKPC with nitric oxide showed a potential use of this enzyme for quantitative spectrophotometric determination of NO and as a component of novel NO sensitive electrodes.  相似文献   

12.
Direct and indirect HPLC-UV methods for the quantitative determination of anthraquinones in dried madder root have been developed, validated and compared. In the direct method, madder root was extracted twice with refluxing ethanol-water. This method allowed the determination of the two major native anthraquinone glycosides lucidin primeveroside and ruberythric acid. In the indirect extraction method, the anthraquinone glycosides were first converted into aglycones by endogenous enzymes and the aglycones were subsequently extracted with tetrahydrofuran-water and then analysed. In this case the anthraquinones alizarin, purpurin and nordamnacanthal may be determined. The content of nordamnacanthal is proportional to the amount of lucidin primeveroside originally present. The indirect extraction method is easier to apply. Different madder cultivars were screened for their anthraquinone content.  相似文献   

13.
《Phytochemistry》1986,25(5):1123-1126
From callus cultures of Cinchona pubescens seven known anthraquinones, alizarin-2-methylether, anthragallol-1,2-dimethylether, purpurin, purpurin-1-methylether, 1-hydroxy-2-hydroxymethylanthraquinone, 2-hydroxy-1,3,4-trimethoxyanthraquinone and 2,5-(or 3,5-)dihydroxy-1,3,4-(or -1,2,4-)trimethoxyanthraquinone, and five new anthraquinones, 2-hydroxy-1,3,4,6-(or -1,3,4,7-)tetramethoxyanthraquinone, 1,6-(or 1,7-)dihydroxy-2-methylanthraquinone, 5-hydroxy-purpurin-1-methylether, 4,6-(or 4,7)-dihydroxy-2,7-(or -2,6-)dimethoxyanthraquinone and 6,7-dihydroxy-1-methoxy-2-methylanthraquinone have been isolated.  相似文献   

14.
Bacterial catalase-peroxidases are enzymes containing 0.5-1.0 heme per subunit. The identical subunits are generally 80 kDa in size, and the sequenced subunits of E. coli, S. typhimurium and B. stearothermophilus contain 726-731 amino acid residues per subunit. The heme-containing peroxidases of plants, fungi and yeast are monomeric, homologous and 290-350 residues in size. Analyses of the amino acid sequences indicate that the double length of the bacterial peroxidases can be ascribed to gene duplication. Each half is homologous to eukaryotic, monomeric peroxidase and can be modelled into the high-resolution crystal structure of yeast cytochrome c peroxidase. The comparisons and modelling have predicted: (1) the C-terminal half does not bind heme, and bacterial peroxidases have one heme per subunit; (2) the ten dominating helices observed in the yeast enzyme are highly conserved and connected by surface loops which are often longer in the bacterial peroxidases; and (3) yeast cytochrome c peroxidase has evolved more slowly than other known peroxidases. The study has revealed ten invariant residues and a number of highly conserved residues present in peroxidases of the plant peroxidase superfamily and provides a basis for rationally engineered peroxidases.  相似文献   

15.
A tomato peroxidase involved in the synthesis of lignin and suberin   总被引:24,自引:0,他引:24  
The last step in the synthesis of lignin and suberin has been proposed to be catalyzed by peroxidases, although other proteins may also be involved. To determine which peroxidases are involved in the synthesis of lignin and suberin, five peroxidases from tomato (Lycopersicon esculentum) roots, representing the majority of the peroxidase activity in this organ, have been partially purified and characterized kinetically. The purified peroxidases with isoelectric point (pI) values of 3.6 and 9.6 showed the highest catalytic efficiency when the substrate used was syringaldazine, an analog of lignin monomer. Using a combination of transgenic expression and antibody recognition, we now show that the peroxidase pI 9.6 is probably encoded by TPX1, a tomato peroxidase gene we have previously isolated. In situ RNA hybridization revealed that TPX1 expression is restricted to cells undergoing synthesis of lignin and suberin. Salt stress has been reported to induce the synthesis of lignin and/or suberin. This stress applied to tomato caused changes in the expression pattern of TPX1 and induced the TPX1 protein. We propose that the TPX1 product is involved in the synthesis of lignin and suberin.  相似文献   

16.
Two anionic peroxidases were isolated from Chinese cabbage roots and purified using gel filtration followed by ion-exchange chromatography. Following purification a specific activity of peroxidases was estimated as 50 units.mg-1 (A1) and 30 units.mg-1 (A2) compared with that of a crude extract of the peroxidases which was 2.31 units.mg-1. The pH for its optimum activity was 5.0 and the addition of Ca2+ produced a 15 % increase in peroxidase activity. Isoelectric focusing techniques were carried out in order to classify the peroxidases based on their isoelectric point (pI). Two anionic peroxidases, A1 and A2, were found to have pI values of 4.83 and 4.78, respectively. The peroxidases were found to be heat-stable, with 20 % (A1) and 16 % (A2) of the enzymatic activity remaining after heat treatment at 70 °C for 20 min. The heat inactivation rate followed first-order kinetics with the activation energy; Ea, estimated as 38.2 kcal.mol-1 and 36.4 kcal.mol-1 for A1 and A2, respectively.  相似文献   

17.
The homology between the acidic isoperoxidases from two environmentally-inducedflax genotrophs, L and S, was examined with antisera raisedagainst purified isozymes from S stem tissue. Peroxidases S1,S2 and S4 were found to be immunologically indistinguishablefrom their counterparts L1, L2 and L4 based on results fromimmunodiffusion, immunoinhibition and immunoprecipitation experiments.Corresponding isozymes from S and L, despite displaying differencesin apparent molecular weight, were shown to have identical plvalues. These results support our view that post-translationalmodification of the carbohydrate moiety of the isoperoxidasesfrom L and S is responsible for their differences on polyacrylamidegel electrophoresis. The affinity of the antisera toward threehorseradish peroxidases was also studied and the presence ofthree antigenically distinct groups of peroxidases in plantsis suggested. Key words: Flax peroxidase, horseradish peroxidase, isoperoxidases, homology  相似文献   

18.
Phytochemical re-investigation of the aerial parts of Bonamia spectabilis (Convolvulaceae) led to the isolation of four minor tetrahydrofuran-type sesquilignans (bonaspectins E-H) together with the known neolignan virolongin A and the known lignan rel-(7S,8R,7'R,8'R)-3,3',4,4',5,5'-hexamethoxylignan. Their structures were established on the basis of spectral data. These six compounds as well as further seven lignanoids from B. spectabilis, characterised previously, were tested for their antiplasmodial activity against a chloroquine-sensitive strain (PoW) and a chloroquine-resistant clone (Dd2) of Plasmodium falciparum. Bonaspectin C 4"-O-glucoside, its aglycone, and bonaspectin D 4"-O-glucoside revealed the highest antiplasmodial activities (IC50 values: 1.3, 2.0, 6.5 microM [PoW]; 1.7, 4.6, 3.7 microM [Dd2], respectively).  相似文献   

19.
S Kimura  M Ikeda-Saito 《Proteins》1988,3(2):113-120
Human myeloperoxidase and human thyroid peroxidase nucleotide and amino acid sequences were compared. The global similarities of the nucleotide and amino acid sequences are 46% and 44%, respectively. These similarities are most evident within the coding sequence, especially that encoding the myeloperoxidase functional subunits. These results clearly indicate that myeloperoxidase and thyroid peroxidase are members of the same gene family and diverged from a common ancestral gene. The residues at 416 in myeloperoxidase and 407 in thyroid peroxidase were estimated as possible candidates for the proximal histidine residues that link to the iron centers of the enzymes. The primary structures around these histidine residues were compared with those of other known peroxidases. The similarity in this region between the two animal peroxidases (amino acid 396-418 in thyroid peroxidase and 405-427 in myeloperoxidase) is 74%; however, those between the animal peroxidases and other yeast and plant peroxidases are not significantly high, although several conserved features have been observed. The possible location of the distal histidine residues in myeloperoxidase and thyroid peroxidase amino acid sequences are also discussed.  相似文献   

20.
A thorough search for a soluble peroxidase in 31 different tissues of rat indicated the presence of a constitutive activity only in lacrimal, preputial and submaxillary gland. An induced soluble peroxidase activity was also detected in the lactating mammary gland and in the estrogen-induced uterine secretory fluid. The lacrimal gland was the richest source of the enzyme. No peroxidase activity was detected in the lactating mammary gland of mouse and hamster nor in the preputial gland of mouse and uterine fluid of hamster. The three constitutive and two induced soluble peroxidases of rat had a native molecular mass of 73 kDa by gel filtration and they showed a similar mobility in native PAGE. Lactoperoxidase of cow's milk and solubilized rat membrane-bound peroxidases of uterus, intestine and bone marrow showed in native PAGE a mobility which was distinctly different from that of rat soluble peroxidases. As the lacrimal gland of rat was the richest source of soluble peroxidase, the enzyme was purified from this gland to apparent homogeneity; SDS/PAGE then showed a single band of molecular mass 75 kDa which was similar to that obtained by gel filtration. Peroxidase also purified from preputial and submaxillary gland, as well as commercial lactoperoxidase, had a similar molecular mass on SDS/PAGE to purified lacrimal peroxidase. The visible spectrum of lacrimal peroxidase was similar to that of lactoperoxidase but different from membrane-bound peroxidase of rat neutrophils. On isoelectric focussing, purified lacrimal peroxidase resolved into about 14 multiple forms spanning a pI range of 6.5-3.5 while lactoperoxidase focussed at the cathode. Evidence presented suggests that the multiple forms are possibly due to differences in glycosylation. Immunodiffusion, immunoprecipitation and Western blot using antilacrimal peroxidase serum showed a similar interacting species for all five soluble peroxidases of rat while membrane-bound peroxidases showed no interaction. Although in immunodiffusion, the antiserum failed to cross-react with lactoperoxidase it did interact with lactoperoxidase on Western blot. The results indicate that the various constitutive and induced soluble peroxidases of rat tissues are similar to lacrimal peroxidase but are distinctly different from the known membrane-bound peroxidases of rat. However the lacrimal peroxidase shows both similarities as well as dissimilarities with bovine lactoperoxidase. This soluble peroxidase system of rat could be useful to study tissue-specific regulation of gene expression at the molecular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号