首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 763 毫秒
1.
2.
3.
The high affinity receptor for IgE (Fc epsilon RI) found on mast cells and basophils is a tetrameric complex of a single alpha subunit, a single beta subunit, and two identical gamma subunits. The genes for the three subunits of mouse Fc epsilon RI have now been cloned from the mast cell line, PT18. When compared at the DNA level, the rat and mouse subunits are similarly conserved. However, at the protein level the homology between mouse and rat alpha is surprisingly low (71% identities) especially in the cytoplasmic regions (57% identities) which are of different length (25 and 20 residues, respectively). By contrast the beta and gamma are homogeneously conserved between mouse and rat (83 and 93% identities, respectively). The consensus amino acid sequence of the alpha subunit derived from three species (rat, mouse, and human) shows that the cytoplasmic tail diverges to the same extent as the leader peptide. Conversely, the transmembrane domain of the alpha is highly conserved and contains 10 consecutive residues that are identical. Comparisons between mouse Fc epsilon RI and other mouse proteins reveal regions of high homology between the alpha subunit and Fc gamma RIIa and between the gamma subunit and the zeta chain of the T cell receptor. Cells transfected with the alpha gene express the alpha subunit on their surface very inefficiently. Efficient expression is only achieved after co-transfection of the three rodent genes or of the human alpha gene together with the rodent gamma without apparent need for beta. The subunits are completely interchangeable upon transfection so that various chimeric mouse-rat-human receptors can be expressed.  相似文献   

4.
The receptor for IgE (Fc epsilon RI) is a multimeric complex containing one alpha chain, one beta chain with four transmembrane domains and one homodimer of disulfide-linked gamma-chains. The Fc epsilon RI gamma-chains form additional disulfide-linked dimers with the homologous zeta- and eta-chains, as part of the TCR complex. The low affinity receptor for IgG (Fc gamma RIII)2 on NK cells is also associated with zeta-chains. Here we show that the gamma-chain is expressed in NK cells both as a group of heterogenous gamma gamma homodimers and also as a heterodimer bound to zeta. Fc gamma RIIIA is associated with three types of dimers zeta zeta, gamma zeta, and notably gamma gamma as well. In fact, gamma gamma appears to be the predominant species associating with Fc gamma RIIIA. The surface expressed Fc epsilon RI also associates with the same group of heterogenous gamma gamma homodimers. We also show that there is no C-terminal posttranslational cleavage of gamma occurring before its insertion into the plasma membrane as previously suggested. Thus, like the TCR, Fc gamma RIIIA may form a variety of receptor isoforms, though at present we do not understand the functional implications of these structures.  相似文献   

5.
To define functionally critical regions of the high affinity receptor for IgE (Fc epsilon RI), we stably transfected P815 cells with mutated cDNAs coding for subunits with truncated cytoplasmic domains (CD). In addition, to examine further the role of the beta subunit, stable transfectants expressing chimeric Fc epsilon RI without beta subunits were generated. Transfectants were tested for receptor-mediated changes in intracellular Ca2+, for stimulated hydrolysis of phosphoinositides, and for protein tyrosine phosphorylation. In all cases these biochemical signals were affected coordinately, suggesting that they are coupled, possibly in a single pathway. Truncation of the alpha subunit or of the NH2-terminal CD of the beta subunit had no effect, but Fc epsilon RIs with beta subunits missing the COOH-terminal CD were inactive. Interestingly, receptors in cells transfected only with human Fc epsilon RI(alpha) (which utilize the gamma chains endogenously synthesized by the P815 cells but which contain no beta subunits) responded normally. Therefore, the beta subunit influences the functions studied but is not essential. Although structural analysis excluded a straightforward mechanism, truncation of the CD of the gamma chain led to loss of signaling.  相似文献   

6.
The T cell receptor (TCR) is a molecular complex formed by at least seven transmembrane proteins: the antigen/major histocompatibility complex recognition unit (Ti alpha-beta heterodimer) and the invariant CD3 chains (gamma, delta, epsilon, zeta, and eta). In addition to targeting partially assembled Ti alpha-beta CD3 gamma delta epsilon TCR complexes to the cell surface, CD3 zeta appears to be essential for interleukin-2 production after TCR stimulation with antigen/major histocompatibility complex. The gamma chain of the high affinity Fc receptor for IgE (Fc epsilon RI gamma) has significant structural homology to CD3 zeta and the related CD3 eta subunit. To identify the functional significance of sequence homologies between CD3 zeta and Fc epsilon RI gamma in T cells, we have transfected a Fc epsilon RI gamma cDNA into a T cell hybridoma lacking CD3 zeta and CD3 eta proteins. Herein we show that a Fc epsilon RI gamma-gamma homodimer associates with TCR components to up-regulate TCR surface expression. A TCR composed of Ti alpha-beta CD3 gamma delta epsilon Fc epsilon RI gamma-gamma is sufficient to restore the coupling of TCR antigen recognition to the interleukin-2 induction pathway, demonstrating the functional significance of structural homology between the above receptor subunits. These results, in conjunction with the recent finding that CD3 zeta, CD3 eta, and Fc epsilon RI gamma are coexpressed in certain T cells as subunits of an unusual TCR isoform, suggest that Fc epsilon RI gamma is likely to play a role in T cell lineage function.  相似文献   

7.
The high affinity receptor for IgE (Fc epsilon RI) is a tetrameric structure consisting of a single IgE-binding alpha subunit, a single beta subunit, and two disulfide-linked gamma subunits. The alpha subunit of Fc epsilon RI and most Fc receptors are homologous members of the Ig superfamily. By contrast, the beta and gamma subunits from Fc epsilon RI are not homologous to the Ig superfamily. The gamma-chains do share a region of high homology with the zeta-chain of the TCR. No homology has been found to date for beta with any published sequence. Here, we report that a single copy gene encodes Fc epsilon RI beta and that the locus for Fc epsilon RI beta is found on mouse chromosome 19, genetically linked to the Ly-1 (Ly-12) locus and in a region that also contains Ly-10 and Ly-44 (CD20). Homology comparisons among these molecules reveal limited regions of homology between Fc epsilon RI beta and Ly-44 (CD20) as well as other striking similarities: both molecules have four putative transmembrane segments and a probably topology where both amino- and carboxytermini protrude into the cytoplasm. In addition, we show that a single gene for FC epsilon RI gamma is found at the distal end of mouse chromosome 1, clustered in a region where Fc epsilon RI alpha has also been linked to Fc gamma RII. At least one of the two forms of Fc gamma RII has recently been shown to contain gamma subunits identical to the gamma subunits of Fc epsilon RI. The close association of the genes for Fc epsilon RI alpha, FC gamma RII, and their shared gamma subunits raises interesting implications regarding coordinate regulation of gene expression.  相似文献   

8.
The high-affinity IgE receptor Fc epsilon RI is expressed on the cell surface of mast cells and basophils, and plays a central role in IgE-mediated inflammatory reactions. Recently, peroxisome proliferator-activated receptors (PPARs) have been implicated in the anti-inflammatory response. To investigate a possible role for PPAR in human basophils, the effect of PPAR ligands on Fc epsilon RI expression in human basophilic KU812 cells was studied. The PPARalpha ligand, leukotriene B(4), did not affect the cell surface expression of Fc epsilon RI. However, prostaglandin (PG) A(1) and 15-deoxy-Delta(12,14) PGJ(2) (15d-PGJ(2)), which are PPARbeta and gamma ligands, respectively, were both able to decrease Fc epsilon RI expression. Treatment with PGA(1) or 15d-PGJ(2) separately also reduced histamine release from KU812 cells in response to cross-linkage of Fc epsilon RI. In addition, RT-PCR analysis showed that KU812 cells expressed the mRNA for PPARalpha, beta, and gamma, indicating that PPARbeta or gamma may negatively regulate the cell activation via Fc epsilon RI. Cells treated with 15d-PGJ(2) expressed lower levels of Fc epsilon RI alpha and gamma mRNA, and PGA(1) treatment decreased the level of Fc epsilon RI gamma mRNA. These results suggest that the suppression of Fc epsilon RI expression by PPARs may be due to the down-regulation of Fc epsilon RI alpha or gamma mRNA.  相似文献   

9.
Polymorphonuclear neutrophils (PMNs) are important effector cells in host defense and the inflammatory response to antigen. The involvement of PMNs in inflammation is mediated mainly by the Fc receptor family, including IgE receptors. Recently, PMNs were shown to express two IgE receptors (CD23/Fc epsilon RII and galectin-3). In allergic diseases, the dominant role of IgE has been mainly ascribed to its high-affinity receptor, Fc epsilon RI. We have examined the expression of Fc epsilon RI by PMNS: mRNA and cell surface expression of Fc epsilon RI alpha chain was identified on PMNs from asthmatic subjects. Furthermore, preincubation with human IgE Fc fragment blocks completely the binding of anti-Fc epsilon RI alpha chain (mAb15--1) to human PMNS: Conversely, preincubation of PMNs with mAb15--1 inhibits significantly the binding of IgE Fc fragment to PMNs, indicating that IgE bound to the cell surface of PMNs mainly via the Fc epsilon RI. Peripheral blood and bronchoalveolar lavage (BAL) PMNs from asthmatic subjects also express intracellular Fc epsilon RI alpha and beta chain immunoreactivity. Engagement of Fc epsilon RI induces the release of IL-8 by PMNS: Collectively, these observations provide new evidence that PMNs express the Fc epsilon RI and suggest that these cells may play a role in allergic inflammation through an IgE-dependent activation mechanism.  相似文献   

10.
11.
The high affinity receptor for IgE (Fc epsilon RI) is present on mast cells and basophils, and the aggregation of IgE-occupied receptors by Ag is responsible for the release of allergic mediators. The Fc epsilon RI is composed of at least three different subunits, alpha, beta, and gamma, with the alpha subunit binding IgE. The series of biochemical events linking receptor aggregation to the release of mediators has not been fully delineated. As a step towards understanding these processes, and for the development of functional cell lines, we have transfected the human Fc epsilon RI alpha subunit into the rat mast cell line RBL 2H3. These human Fc epsilon RI alpha-transfected cell lines have been characterized with respect to the association of the human alpha subunit with endogenous rat beta and gamma subunits and the ability of aggregated Fc epsilon RI alpha subunits to mediate a variety of biochemical events. The signal transduction events monitored include phosphoinositide hydrolysis, Ca2+ mobilization, tyrosine phosphorylation, histamine release, and arachidonic acid metabolism. In all cases, the events mediated by aggregating human Fc epsilon RI alpha subunits were indistinguishable from those produced via the rat Fc epsilon RI alpha. These results demonstrate that the human Fc epsilon RI alpha subunit can functionally substitute for the rat Fc epsilon RI alpha subunit during signal transduction. The availability of this cell line will provide a means of evaluating potential Fc epsilon RI antagonists.  相似文献   

12.
The T-cell receptor (TCR) is a multimeric receptor composed of the Ti alpha beta heterodimer and the noncovalently associated CD3 gamma delta epsilon and zeta(2) chains. All of the TCR chains are required for efficient cell surface expression of the TCR. Previous studies on chimeric molecules containing the di-leucine-based endocytosis motif of the TCR subunit CD3 gamma have indicated that the zeta chain can mask this motif. In this study, we show that successive truncations of the cytoplasmic tail of zeta led to reduced surface expression levels of completely assembled TCR complexes. The reduced TCR expression levels were caused by an increase in the TCR endocytic rate constant in combination with an unaffected exocytic rate constant. Furthermore, the TCR degradation rate constant was increased in cells with truncated zeta. Introduction of a CD3 gamma chain with a disrupted di-leucine-based endocytosis motif partially restored TCR expression in cells with truncated zeta chains, indicating that the zeta chain masks the endocytosis motif in CD3 gamma and thereby stabilizes TCR cell surface expression.  相似文献   

13.
Fc receptors and immunoglobulin binding factors   总被引:5,自引:0,他引:5  
W H Fridman 《FASEB journal》1991,5(12):2684-2690
Receptors for the Fc portion of Ig (Fc receptors, FcR) are found on all cell types of the immune system. Three types of FcR react with IgG: Fc gamma RI is a high-affinity receptor binding IgG monomers whereas Fc gamma RII and Fc gamma RIII are low-affinity receptors binding IgG immune complexes; the three types of Fc gamma R are members of the Ig superfamily. Two FcR react with IgE:Fc epsilon RI is a multichain receptor binding IgE with high affinity; it is composed of an IgE-binding alpha chain, homologous to Fc gamma RIII, and of gamma and beta chains that are necessary for receptor expression and signal transduction. The low-affinity Fc epsilon RII is the only FcR described so far that is not a member of the Ig superfamily but resembles animal lectins; it is composed of a transmembrane chain with an intracytoplasmic NH2 terminus. Fc alpha R has homology with Fc gamma R and is a member of the Ig superfamily. Receptors for IgM and IgD are not characterized yet. Finally, Ig transport is made by FcR-like molecules such as the poly-Ig receptor or an MHC-like receptor found on neonatal intestine. A remarkable property of most FcR is the fact that they are released in cell supernatants and circulate in biological fluids as immunoglobulin binding factors (IBF) generated either by cleavage at the cell membrane or by splicing of FcR transmembrane exon. Immunoglobulin binding factors may interfere with Ig-mediated functions and have direct immunoregulatory activities. Involvement of FcR or IBF has been postulated in several diseases, and monoclonal antibodies to FcR are beginning to be used in therapeutics, particularly to target cytotoxic effector lymphocytes and monocytes to tumor cells.  相似文献   

14.
We describe the isolation and characterization of the gene encoding the mouse high affinity Fc receptor Fc gamma RI. Using a mouse cDNA Fc gamma RI probe four unique overlapping genomic clones were isolated and were found to encode the entire 9 kb of the mouse Fc gamma RI gene. Sequence analysis of the gene showed that six exons account for the entire Fc gamma RI cDNA sequences including the 5'- and 3'-untranslated sequences. The first and second exons encode the signal peptide; exons 3, 4, and 5 encode the extracellular Ig binding domains; and exon 6 encodes the transmembrane domain, the cytoplasmic region, and the entire 3'-untranslated sequence. This exon pattern is similar to Fc gamma RIII and Fc epsilon RI but differs from the related Fc gamma RII gene which contains 10 exons and encodes the b1 and b2 Fc gamma RII. Southern blot analysis had shown that the mouse Fc gamma RI gene is a single copy gene with no RFLP in inbred strains of mice, but analysis of an intersubspecies backcross of mice showed that unlike other mouse FcR genes which are on mouse chromosome 1 the locus encoding Fc gamma RI, termed Fcg1, is located on chromosome 3. Interestingly, the Fcg1 locus is located near the end of a region with known linkage homology to human chromosome 1. Analysis of human x rodent somatic cell hybrid cell lines indicates that the human FCG1 locus encoding the human Fc gamma RI maps to chromosome I and therefore possibly linked to other FcR genes on this chromosome. These results suggest that the linkage relationships among these genes in the human genome are not preserved in the mouse.  相似文献   

15.
Multiubiquitination of proteins is a critical step leading to selective degradation for many polypeptides. Therefore, activation-induced multiubiquitination of cell surface receptors, such as the platelet-derived growth factor (PDGF) receptor and the T cell antigen (TCR) receptor, may correspond to a degradation pathway for ligand-receptor complexes. Here we show that the antigen-induced engagement of high-affinity immunoglobulin E receptors (Fc epsilon RI) results in the immediate multiubiquitination of Fc epsilon RI beta and gamma chains. This ubiquitination is independent of receptor phosphorylation and is restricted to activated receptors. Surprisingly, receptor multiubiquitination is immediately reversible when receptors are disengaged. Therefore, multiubiquitination and deubiquitination of Fc epsilon RI receptors is controlled at the cell surface by receptor engagement and disengagement. The rapidity, specificity and, most importantly, the reversibility of the activation-induced receptor multiubiquitination suggest that this process may turn on/off a cell surface receptor signaling function thus far unsuspected.  相似文献   

16.
The structurally related TCR-zeta and Fc receptor for IgE (Fc epsilon RI)-gamma are critical signaling components of the TCR and Fc epsilon RI, respectively. Although chimeric Ab receptors containing zeta and gamma signaling chains have been used to redirect CTL to tumors, a direct comparison of their relative efficacy has not previously been undertaken. Here, in naive T lymphocytes, we compare the signaling capacities of the zeta and gamma subunits within single-chain variable domain (scFv) chimeric receptors recognizing the carcinoembryonic Ag (CEA). Using a very efficient retroviral gene delivery system, high and equivalent levels of scFv-zeta and scFv-gamma receptors were expressed in T cells. Despite similar levels of expression and Ag-specific binding to colon carcinoma target cells, ligation of scFv-anti-CEA-zeta chimeric receptors on T cells resulted in greater cytokine production and direct cytotoxicity than activation via scFv-anti-CEA-gamma receptors. T cells expressing scFv-zeta chimeric receptors had a greater capacity to control the growth of human colon carcinoma in scid/scid mice or mouse colon adenocarcinoma in syngeneic C57BL/6 mice. Overall, these data are the first to directly compare and definitively demonstrate the enhanced potency of T cells activated via the zeta signaling pathway.  相似文献   

17.
Organization of the human T-cell receptor genes   总被引:1,自引:0,他引:1  
T lymphocytes recognize antigens through their membrane bound T-cell receptors. Whereas the conventional T-cell receptors are heterodimers of alpha and beta chains, expressed at the surface of CD3+ CD4+ and CD3+ CD8+ T lymphocytes, the gamma delta T-cell receptors are found at the surface of a subset of T-lymphocytes of phenotype CD3+ CD4- CD8-. The synthesis of the T-cell receptor chains results from the junction (or rearrangement) of DNA segments: Variable (V) gene and joining (J) segment for the alpha and gamma chains, V gene, D (diversity) and J segments for the beta and delta chains. In this review, we summarize the recent findings on the genomic organization of the alpha, beta, gamma and delta T-cell receptor loci in human.  相似文献   

18.
The T-cell antigen receptor is a multisubunit complex consisting of at least seven chains. Based upon structural and genetic considerations, we have divided these chains into three groups. The alpha and beta subunits (Ti) are the clonotypic chains responsible for antigen recognition. Three chains that are invariant among all T-cells define the CD3 complex. These include the CD3 gamma, delta, and epsilon chains. The zeta chain is a distinct component that, like the CD3 chains, is invariant among all T-cells. In the majority of receptors, zeta is found as a disulfide-linked homodimer. We have recently shown that approximately 10% of zeta is disulfide-linked to a chain which we have called eta. A preliminary model has been proposed, suggesting that there are two subclasses of receptors, depending upon the presence within the complex of either the zeta-zeta homodimer or the zeta-eta heterodimer. Evidence has been presented that these two subclasses may perform distinct signaling functions. In this paper the eta chain is characterized to determine whether it is structurally related to the zeta chain and, in particular, whether it might represent a post-translational modification of zeta. We can identify specific antigenic epitopes that are shared by both zeta and eta. However, not all antibodies raised against zeta can directly recognize eta. The apparent molecular mass of eta is 22 kDa, whereas zeta has a molecular mass of 16 kDa. We are unable to demonstrate any post-translational covalent modifications of eta to explain the difference in apparent molecular weight. These include phosphorylation, glycosylation, or sulfation. Amino acid incorporation studies demonstrate that the amino acid composition of eta is distinct from that of zeta. All of the eta in a T-cell is found in association with the rest of the components of the T-cell receptor. In addition, our anti-eta antibodies allow us to directly recognize human eta, which has an apparent molecular mass of approximately 23 kDa. Thus, eta and zeta appear to be related but distinct proteins, and we would propose that eta is the second member of the zeta group of components of the T-cell receptor.  相似文献   

19.
A cDNA clone encoding the receptor for guinea pig immunoglobulin G was isolated from a guinea pig peritoneal macrophage cDNA library. The cloned cDNA encoded 271 amino acids containing an N-terminal signal sequence. The deduced amino acid sequence is most homologous to murine Fc gamma RII beta 2. The receptor protein could be expressed in COS-7 and L cells transfected with the cDNA, suggesting that the expression of this receptor does not require the co-expression of a second chain such as gamma chain of Fc epsilon RI or CD3 zeta chain. The transformant L cells showed the binding to both the guinea pig IgG1 and IgG2 antibodies complexed with antigen, indicating that the cDNA we cloned was the one for guinea pig Fc gamma 1/gamma 2R.  相似文献   

20.
Although Fc epsilon R have been detected on human eosinophils, levels varied from moderate to extremely low or undetectable depending on the donor and methods used. We have attempted to resolve the conflicting data by measuring levels of IgE, Fc epsilon RI, and Fc epsilon RII in or on human eosinophils from a variety of donors (n = 26) and late-phase bronchoalveolar lavage fluids (n = 5). Our results demonstrated little or no cell surface IgE or IgE receptors as analyzed by immunofluorescence and flow cytometry. Culture of eosinophils for up to 11 days in the presence or absence of IgE and/or IL-4 (conditions that enhance Fc epsilon R on other cells) failed to induce any detectable surface Fc epsilon R. However, immunoprecipitation and Western blot analysis of eosinophil lysates using mAb specific for Fc epsilon RI alpha showed a distinct band of approximately 50 kDa, similar to that found in basophils. Western blotting also showed the presence of FcR gamma-chain, but no Fc epsilon RI beta. Surface biotinylation followed by immunoprecipitation again failed to detect surface Fc epsilon RI alpha, although surface FcR gamma was easily detected. Since we were able to detect intracellular Fc epsilon RI alpha, we examined its release from eosinophils. Immunoprecipitation and Western blotting demonstrated the release of Fc epsilon RI alpha into the supernatant of cultured eosinophils, peaking at approximately 48 h. We conclude that eosinophils possess a sizable intracellular pool of Fc epsilon RI alpha that is available for release, with undetectable surface levels in a variety of subjects, including those with eosinophilia and elevated serum IgE. The biological relevance of this soluble form of Fc epsilon RI alpha remains to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号