首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Transgenic mice carrying an immunoglobulin mu heavy chain transgene exhibit isotype switching of the transgene. We have now characterized the mechanism of transgene switching in these mice. The site of mu transgene insertion in one transgenic line has been localized to chromosome 5 using a series of polymorphic endogenous retroviruses as genetic markers in backcross mice. The endogenous immunoglobulin heavy chain locus resides on mouse chromosome 12, which shows that transgene isotype switching can occur between two different chromosomes even though normal antibody gene switching has generally been thought to occur within one chromosome. We find that transgene isotype switching involves interchromosomal DNA recombination, and our data suggest that the same enzymatic mechanisms mediate both normal isotype switch recombination and interchromosomal transgene switching. Our findings also support the notion that the isotype switching mechanism can induce chromosomal translocations such as observed for the c-myc gene in some B cell tumors.  相似文献   

2.
Isotype switching by murine B cells follows a pattern whereby the proportion of cells undergoing switching increases with division number and is regulated by cytokines. Here we explored whether human B cells behaved in a similar manner. The effect of IL-4, IL-10, and IL-13, alone or in combination, on Ig isotype switching by highly purified naive human CD40 ligand (CD40L)-activated B cells was measured against division number over various harvest times. Switching to IgG was induced by IL-4 and, to a lesser extent, IL-13 and IL-10. The combination of IL-10 with IL-4, but not IL-13, induced a higher percentage of cells to undergo switching. Isotype switching to IgG by human CD40L-activated naive B cells was found to be linked to the division history of the cells: IgG(+) cells appeared in cultures of B cells stimulated with CD40L and IL-4 after approximately the third cell division, with the majority expressing IgG1, thus revealing a predictable pattern of IgG isotype switching. These results reveal a useful quantitative framework for monitoring the effects of cytokines on proliferation and isotype switching that should prove valuable for screening Ig immunodeficiencies and polymorphisms in the population for a better understanding of the regulation of human humoral immune responses.  相似文献   

3.
4.
5.
M Matsuoka  K Yoshida  T Maeda  S Usuda  H Sakano 《Cell》1990,62(1):135-142
We have characterized circular DNA in mouse splenocytes treated with the mitogen lipopolysaccharide (LPS) and various cytokines, including transforming growth factor beta (TGF-beta) and interleukin 4 (IL-4). Using probes of immunoglobulin heavy chain constant genes (CH), excision products of class switch recombination were identified. The majority of the clones contained the 3' portion of the switch mu (S mu) region and the 5' portion of other switch regions. Some clones contained 3'-S gamma sequences instead of 3'-S mu. This indicates that isotype switching may occur not only from C mu, but also from one of the C gamma genes to other CH genes further down-stream. In the presence of LPS, the cytokine TGF-beta enhanced the detection of 5'-S alpha-positive clones, while the lymphokine IL-4 enhanced 5'-S gamma 1 positives. The data support the notion that TGF-beta and IL-4 can direct isotype-specific class switching.  相似文献   

6.
7.
Piganeau G  Eyre-Walker A 《Heredity》2004,92(4):282-288
In an attempt to resolve the controversy about whether recombination occurs in human mtDNA, we have analysed three recently published data sets of complete mtDNA sequences along with 10 RFLP data sets. We have analysed the relationship between linkage disequilibrium (LD) and distance between sites under a variety of conditions using two measures of LD, r2 and /D'/. We find that there is a negative correlation between r2 and distance in the majority of data sets, but no overall trend for /D'/. Five out of six mtDNA sequence data sets show an excess of homoplasy, but this could be due to either recombination or hypervariable sites. Two additional recombination detection methods used, Geneconv and Maximum Chi-Square, showed nonsignificant results. The overall significance of these findings is hard to quantify because of nonindependence, but our results suggest a lack of evidence for recombination in human mtDNA.  相似文献   

8.
Affinity maturation of the Ab repertoire in germinal centers leads to the selection of high affinity Abs with selected heavy chain constant regions. Ab maturation involves two modifications of the Ig genes, i.e., somatic hypermutation and class switch recombination. The mechanisms of these two processes are not fully understood. As shown by the somatic hypermutation and class switch recombination-deficient phenotype of activation-induced cytidine deaminase (AID)-deficient patients (hyperIgM type 2 syndrome) and mice, both processes require the AID molecule. Somatic DNA modifications require DNA breaks, which, at least for class switch recombination, lead to dsDNA breaks. By using a ligation-mediated PCR, it was found that class switch recombination-induced dsDNA breaks in S mu switch regions were less frequent in AID-deficient B cells than in AID-proficient B cells, thus indicating that AID acts upstream of DNA break induction.  相似文献   

9.
Serial section electron microscopic autoradiography was used to examine the relationship between recombination nodules and 3H-thymidine incorporation during pachytene in Drosophila melanogaster females. For both ellipsoidal and spherical recombination nodules, the number of nodules that are associated with an autoradiographic grain is higher than that expected by chance; this observation is consistent with the hypotheses that recombination involves DNA synthesis and that recombination nodules are the sites of meiotic recombination. Moreover, general DNA replication (S-phase) and synapsis (synaptonemal complex formation) were found to be temporally distinct events, contrary to previous reports; Drosophila females therefore are not exceptional in this regard.This paper is dedicated to Herschel Roman on the occasion of his 65th birthday in fond appreciation for his many and varied contributions to Genetics as Professor and Chairman of the Department of Genetics, University of Washington, Seattle Washington, U.S.A.  相似文献   

10.
11.
Prototypical class switching in mouse and human immunoglobulin heavy chains occurs through recombination of tandem blocks of short repeats located 5' to each heavy chain constant region (CH) except C delta. Deletion of C mu in immunoglobulin D (IgD)-secreting murine plasmacytomas occurs illegitimately. We demonstrate here that in human IgD-secreting myeloma cells freshly isolated from patient bone marrow and in normal peripheral blood B lymphocytes, an IgD switch can occur through homologous recombination of a direct repeat consisting of a 442-bp sequence 1.5 kbp 3' of the JH complex and a 443-bp sequence that is duplicated almost perfectly (96% similarity) 1.7 kbp 5' of the C delta gene (442/443-base-pair [bp] repeat). This homologous recombination mechanism is not exclusive for IgD switching, since C mu deletion endpoints in two established IgD-secreting myeloma cell lines fall outside the 442/443-bp repeat. The 442/443-bp mediated recombination shows cell type specificity, and we propose that it represents a unique mode for increased levels of IgD secretion in humans.  相似文献   

12.
13.
14.
15.
DNA polymerases catalyze the synthesis of DNA using a continuous uninterrupted template strand. However, it has been shown that a 3'-->5' exonuclease-deficient form of the Klenow fragment of Escherichia coli DNA polymerase I as well as DNA polymerase of Thermus aquaticus can synthesize DNA across two unlinked DNA templates. In this study, we used an oligonucleotide-based assay to show that discontinuous DNA synthesis was present in HeLa cell extracts. DNA synthesis inhibitor studies as well as fractionation of the extracts revealed that most of the discontinuous DNA synthesis was attributable to DNA polymerase alpha. Additionally, discontinuous DNA synthesis could be eliminated by incubation with an antibody that specifically neutralized DNA polymerase alpha activity. To test the relative efficiency of each nuclear DNA polymerase for discontinuous synthesis, equal amounts (as measured by DNA polymerase activity) of DNA polymerases alpha, beta, delta (+/- PCNA) and straightepsilon (+/- PCNA) were used in the discontinuous DNA synthesis assay. DNA polymerase alpha showed the most discontinuous DNA synthesis activity, although small but detectable levels were seen for DNA polymerases delta (+PCNA) and straightepsilon (- PCNA). Klenow fragment and DNA polymerase beta showed no discontinuous DNA synthesis, although at much higher amounts of each enzyme, discontinuous synthesis was seen for both. Discontinuous DNA synthesis by DNA polymerase alpha was seen with substrates containing 3 and 4 bp single-strand stretches of complementarity; however, little synthesis was seen with blunt substrates or with 1 bp stretches. The products formed from these experiments are structurally similar to that seen in vivo for non-homologous end joining in eukaryotic cells. These data suggest that DNA polymerase alpha may be able to rejoin double-strand breaks in vivo during replication.  相似文献   

16.
Cheng CP  Nagy PD 《Journal of virology》2003,77(22):12033-12047
RNA recombination occurs frequently during replication of tombusviruses and carmoviruses, which are related small plus-sense RNA viruses of plants. The most common recombinants generated by these viruses are either defective interfering (DI) RNAs or chimeric satellite RNAs, which are thought to be generated by template switching of the viral RNA-dependent RNA polymerase (RdRp) during the viral replication process. To test if RNA recombination is mediated by the viral RdRp, we used either a purified recombinant RdRp of Turnip crinkle carmovirus or a partially purified RdRp preparation of Cucumber necrosis tombusvirus. We demonstrated that these RdRp preparations generated RNA recombinants in vitro. The RdRp-driven template switching events occurred between either identical templates or two different RNA templates. The template containing a replication enhancer recombined more efficiently than templates containing artificial sequences. We also observed that AU-rich sequences promote recombination more efficiently than GC-rich sequences. Cloning and sequencing of the generated recombinants revealed that the junction sites were located frequently at the ends of the templates (end-to-end template switching). We also found several recombinants that were generated by template switching involving internal positions in the RNA templates. In contrast, RNA ligation-based RNA recombination was not detected in vitro. Demonstration of the ability of carmo- and tombusvirus RdRps to switch RNA templates in vitro supports the copy-choice models of RNA recombination and DI RNA formation for these viruses.  相似文献   

17.
Cre recombinase was used to mediate recombination between a chromosomally introduced loxP sequence in Arabidopsis thaliana (35S-lox-cre) and transferred DNA (T-DNA) originating from Agrobacterium tumefaciens (plox-npt), carrying a single loxP sequence. Constructs were designed for specific Cre-mediated recombination between the two lox sites, resulting in restoration of neomycin phosphotransferase (nptII) expression at the target locus. Kanamycin resistant (Kmr) recombinants were obtained with an efficiency of about 1% compared with random integration. Molecular analyses confirmed that these were indeed due to recombination between the lox sites of the target and introduced T-DNA. However, polymerase chain reaction analysis revealed that these reflected site-specific integration events only in a minority (4%). The other events were classified as translocations/inversions (71%) or deletions (25%), and were probably caused by site-specific recombination between a randomly integrated T-DNA and the original target locus. We studied some of these events in detail, including a Cre-mediated balanced translocation event, which was characterized by a combination of molecular, genetic and cytogenetic experiments (fluorescence in situ hybridization to spread pollen mother cells at meiotic prophase I). Our data clearly demonstrate that Agrobacterium-mediated transfer of a targeting T-DNA with a single lox site allows the isolation of multiple chromosomal rearrangements, including translocation and deletion events. Given that the complete sequence of the Arabidopsis genome will have been determined shortly this method has significant potential for applications in functional genomics. Received: 29 December 1999; in revised form: 21 February 2000 / Accepted: 2 March 2000  相似文献   

18.
A characteristic feature of bacteriophage genomes is that they are architecturally mosaic, with each individual genome representing a unique assemblage of individual exchangeable modules. Plausible mechanisms for generating mosaicism include homologous recombination at shared boundary sequences of module junctions, illegitimate recombination in a non-sequence-directed process, and site-specific recombination. Analysis of the novel mycobacteriophage Giles genome not only extends our current perspective on bacteriophage genetic diversity, with more than 60% of the genes unrelated to other mycobacteriophages, but offers novel insights into how mosaic genomes are created. In one example, the integration/excision cassette is atypically situated within the structural gene operon and could have moved there either by illegitimate recombination or more plausibly via integrase-mediated site-specific recombination. In a second example, a DNA segment has been recently acquired from the host bacterial chromosome by illegitimate recombination, providing further evidence that phage genomic mosaicism is generated by nontargeted recombination processes.  相似文献   

19.
While uniparental transmission of mtDNA is widespread and dominating in eukaryotes leaving mutation as the major source of genotypic diversity, recently, biparental inheritance of mitochondrial genes has been demonstrated in reciprocal crosses of Pelargonium zonale and P. inquinans. The thereby arising heteroplasmy carries the potential for recombination between mtDNAs of different descent, i.e. between the parental mitochondrial genomes. We have analyzed these Pelargonium hybrids for mitochondrial intergenomic recombination events by examining differences in DNA blot hybridization patterns of the mitochondrial genes atp1 and cob. Further investigation of these genes and their flanking regions using nucleotide sequence polymorphisms and PCR revealed DNA segments in the progeny, which contained both P. zonale and P. inquinans sequences suggesting an intergenomic recombination in hybrids of Pelargonium. This turns Pelargonium into an interesting subject for studies of recombination and evolutionary dynamics of mitochondrial genomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号