首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relative merits of different isotopic enrichment strategies that might be used in solid state NMR protein structure determinations are explored. The basis for comparison of these merits is the determination of the relative uncertainties in rates measured by a generalized dipolar recoupling experiment. The different schemes considered use 13C, 15N and 2H labeling of ubiquitin with homonuclear magnetization-transfer type experiments under magic-angle spinning (MAS). Specific attention is given to the sensitivity of the predicted relative precisions to variation in natural nuclear density distribution and noise levels. A framework is suggested to gauge the precision of measurement of a given dipolar coupling constant, and the potential for a set of such measurements to constrain structure calculations is explored. The distribution of nuclei in homonuclear 15N and 1H dipolar recoupling spin-exchange experiments appear to provide the most promising tertiary structure information for uniformly labeled ubiquitin.  相似文献   

2.
Carbohydrates influence many essential biological events such as apoptosis, differentiation, tumor metastasis, cancer, neurobiology, immunology, development, host-pathogen interactions, diabetes, signal transduction, protein folding, and many other contexts. We now report on the structure determination of pregnane glycosides isolated from the aerial parts of Ceropegia fusca Bolle (Asclepiadaceae). The observation of cicatrizant, vulnerary and cytostatic activities in some humans and animals of Ceropegia fusca Bolle, a species endemic to the Canary Islands, encouraged us to begin a pharmacological study to determine their exact therapeutic properties. High resolution 1H-NMR spectra of pregnane glycosides very often display well-resolved signals that can be used as starting points in several selective NMR experiments to study scalar (J coupling), and dipolar (NOE) interactions. ROESY is especially suited for molecules such that ωτc ~ 1, where τc are the motional correlation times and ω is the angular frequency. In these cases the NOE is nearly zero, while the rotating-frame Overhauser effect spectroscopy (ROESY) is always positive and increases monotonically for increasing values of τc. The ROESY shows dipolar interactions cross peaks even in medium-sized molecules which are helpful in unambiguous assignment of all the interglycosidic linkages. Selective excitation was carried out using a double pulsed-field gradient spin-echo sequence (DPFGSE) in which 180° Gaussian pulses are sandwiched between sine shaped z-gradients. Scalar interactions were studied by homonuclear DPFGSE-COSY and DPFGSE-TOCSY experiments, while DPFGSE-ROESY was used to monitor the spatial environment of the selectively excited proton. Dipolar interactions between nuclei close in space can be detected by the 1D GROESY experiment, which is a one-dimensional counterpart of the 2D ROESY method. The C-12 and C-17 configurations were determined by ROESY experiments.  相似文献   

3.
The first isolation of a trachylobane from an African specimen of Psiadia punctulata (Asteraceae) is presented in this paper. A complete 1H and 13C NMR spectral analysis of this compound and two other trachylobane diterpenes, previously isolated from the same plant, are also provided. The use of NMR techniques such as gCOSY, gHSQC, gHMBC and 2D-J-resolved, in combination with a software-assisted methodology, led to a complete and unequivocal assignment of 1H and 13C signals. This was achieved together with the measurement of all homonuclear hydrogen coupling constants. The presented detail level of the assignment data has never been published before for trachylobanes. Furthermore, with all determined NMR experimental data from the spectra and to obtain a reliability assessment, signals were simulated in the FOMSC3 and NMR_MultSim software.  相似文献   

4.
Conjugated linolenic acids (CLN) refer to a group of octadecatrienoic acids with three conjugated double bonds. Minor positional and geometrical differences among CLN isomers make their separation and identification difficult. We have used GC-MS and NMR to study three common CLN isomers namely alpha-eleostearic acid, beta-eleostearic acid and punicic acid, finding that some signals of olefinic carbon atoms in NMR spectra were mistakenly assigned in the literature. The present study was therefore undertaken to re-characterize the location of CC double bonds and assign the chemical signals of proton and carbon atoms using (1)H NMR, (13)C NMR, (1)H-(1)H two-dimensional correlation spectra ((1)H-(1)H COSY) and (13)C-(1)H two-dimensional correlation spectra ((13)C-(1)H COSY). The geometrical structure of double bonds in these three CLN isomers was identified using homonuclear decoupling technique.  相似文献   

5.
The backbone resonance assignments have been completed for the apo (1H and 15N) and calcium-loaded (1H, 15N, and 13C) regulatory N-domain of chicken skeletal troponin-C (1-90), using multidimensional homonuclear and heteronuclear NMR spectroscopy. The chemical-shift information, along with detailed NOE analysis and 3JHNH alpha coupling constants, permitted the determination and quantification of the Ca(2+)-induced secondary structural change in the N-domain of TnC. For both structures, 5 helices and 2 short beta-strands were found, as was observed in the apo N-domain of the crystal structure of whole TnC (Herzberg O, James MNG, 1988, J Mol Biol 203:761-779). The NMR solution structure of the apo form is indistinguishable from the crystal structure, whereas some structural differences are evident when comparing the 2Ca2+ state solution structure with the apo one. The major conformational change observed is the straightening of helix-B upon Ca2+ binding. The possible importance and role of this conformational change is explored. Previous CD studies on the regulatory domain of TnC showed a significant Ca(2+)-induced increase in negative ellipticity, suggesting a significant increase in helical content upon Ca2+ binding. The present study shows that there is virtually no change in alpha-helical content associated with the transition from apo to the 2Ca2+ state of the N-domain of TnC. Therefore, the Ca(2+)-induced increase in ellipticity observed by CD does not relate to a change in helical content, but more likely to changes in spatial orientation of helices.  相似文献   

6.
Summary Peptide-water interactions of a ribonuclease C-peptide analogue, RN-24 (Suc-AETAAAKFLRAHA-NH2), which exhibits significant helicity, have been studied in solution using homonuclear 2D and 3D NMR cross-relaxation experiments. Dipolar peptide proton-water proton interactions are indicated by a large number of NOESY-type cross peaks at the H2O resonance frequency, most of them with opposite sign relative to the diagonal. Some cross peaks arise from intrapeptide cross relaxation to labile protons of histidine, threonine, lysine and arginine side chains. The observed peptide-water interactions are rather uniformly distributed, involving peptide backbone and side chains equally. The data are consistent with rapid fluctuations of the conformational ensemble and the absence of peptide regions that are highly shielded from bulk solvent, even in a peptide that exhibits high propensities for formation of helical secondary structure.  相似文献   

7.
Complete proton NMR assignments have been made for a synthetic 18-amino acid peptide named systemin, which functions as a wound-induced polypeptide hormone in tomato plants, and three of its derivatives. The wild-type peptide and this synthetic homolog have equivalent activities in their functional roles as systemic inducing signals in tomato plants. Proton NMR studies were carried out to characterize the solution properties of systemin. A variety of homonuclear proton NMR experiments at both 500 and 600 MHz were utilized in making these assignments, which have resulted in additional structural information. Whereas these results provide no evidence for persistence of common secondary (helix, sheet) or tertiary structural elements in the systemin polypeptide, there is evidence for two distinct molecular conformations at the carboxy terminus.  相似文献   

8.
J P Simorre  A Caille  D Marion  D Marion  M Ptak 《Biochemistry》1991,30(49):11600-11608
Two- and three-dimensional 1H NMR experiments have been used to sequentially assign nearly all proton resonances of the 90 residues of wheat phospholipid transfer protein. Only a few side-chain protons were not identified because of degeneracy or overlapping. The identification of spin systems and the sequential assignment were made at the same time by combining the data of the two- and three-dimensional experiments. The classical two-dimensional COSY, HOHAHA, and NOESY experiments benefit from both good resolution and high sensitivity, allowing the detection of long-range dipolar connectivities. The three-dimensional HOHAHA-NOESY experiment offers the advantage of a faster and unambiguous assignment. As a matter of fact, homonuclear three-dimensional NMR spectroscopy proved to be a very efficient method for resonance assignments of protein 1H NMR spectra which cannot be unraveled by 2D methods. An assignment strategy which overcomes most of the ambiguities has been proposed, in which each individual assignment toward the C-terminal end is supported by another in the opposite direction originating from a completely different part of the spectrum. Location of secondary structures of the phospholipid transfer protein was determined by using the method of analysis introduced here and was confirmed by 3J alpha NH coupling and NH exchange rates. Except for the C-terminal part, the polypeptide chain appears to be organized mainly as helical fragments connected by disulfide bridges. Further modeling will display the overall folding of the protein and should provide a better understanding of its interactions with lipids.  相似文献   

9.
We present two NMR experiments, (3,2)D HNHA and (3,2)D HNHB, for rapid and accurate measurement of 3J(H N-H alpha) and 3J(N-H beta) coupling constants in polypeptides based on the principle of G-matrix Fourier transform NMR spectroscopy and quantitative J-correlation. These experiments, which facilitate fast acquisition of three-dimensional data with high spectral/digital resolution and chemical shift dispersion, will provide renewed opportunities to utilize them for sequence specific resonance assignments, estimation/characterization of secondary structure with/without prior knowledge of resonance assignments, stereospecific assignment of prochiral groups and 3D structure determination, refinement and validation. Taken together, these experiments have a wide range of applications from structural genomics projects to studying structure and folding in polypeptides.  相似文献   

10.
Optical and NMR methods are presented for the identification of cysteine ligands in Cd-substituted metalloproteins, in particular those containing zinc-fingerlike motifs, using Cd-substituted Desulfovibrio gigas rubredoxin (Cd-Rd) as a model [Cd(CysS)4]2- complex. The 113Cd NMR spectrum of Cd-Rd contains a single 113Cd resonance with a chemical shift position (723.6 ppm) consistent with tetrathiolate metal coordination. The proton chemical shifts of the four cysteine ligands were obtained from one-dimensional heteronuclear (1H-113Cd) multiple quantum coherence (HMQC) and total coherence spectroscopy (TOCSY)-relayed HMQC experiments. In addition, sequential assignments were made for two short cysteine-containing stretches of the polypeptide chain using a combination of homonuclear proton correlated spectroscopy, TOCSY, and nuclear Overhauser effect spectroscopy experiments, enabling sequence-specific heteronuclear 3J(1H beta-113Cd) coupling constants for each cysteine to be determined. The magnitude of these couplings (0-38 Hz) follows a Karplus-like dependence with respect to the H beta-C beta-S gamma-Cd dihedral angles, inferred from the crystal structure of the native protein. The difference absorption envelope (Cd-Rd vs. apo-Rd) reveals three distinct transitions with Gaussian-resolved maxima located at 213, 229, and 245 nm, which are paralleled by dichroic features in the corresponding difference CD and magnetic CD spectra. Based on the optical electronegativity theory of Jørgensen, the lowest energy transition has been attributed to a CysS-Cd(II) charge-transfer excitation (epsilon 245, 26,000 M-1 cm-1) with a molar extinction coefficient per cysteine of 6,500 M-1 cm-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Determination of the high resolution solution structure of a protein using nuclear magnetic resonance (NMR) spectroscopy requires that resonances observed in the NMR spectra be unequivocally assigned to individual nuclei of the protein. With the advent of modern, two-dimensional NMR techniques arose methodologies for assigning the1H resonances based on 2D, homonuclear1H NMR experiments. These include the sequential assignment strategy and the main chain directed strategy. These basic strategies have been extended to include newer 3D homonuclear experiments and 2D and 3D heteronuclear resolved and edited methods. Most recently a novel, conceptually new approach to the problem has been introduced that relies on heteronuclear, multidimensional so-called triple resonance experiments for both backbone and sidechain resonance assignments in proteins. This article reviews the evolution of strategies for the assignment of resonances of proteins.  相似文献   

12.
We present a high-resolution nuclear magnetic resonance (NMR) solution structure of a 14-mer RNA hairpin capped by cUUCGg tetraloop. This short and very stable RNA presents an important model system for the study of RNA structure and dynamics using NMR spectroscopy, molecular dynamics (MD) simulations and RNA force-field development. The extraordinary high precision of the structure (root mean square deviation of 0.3 Å) could be achieved by measuring and incorporating all currently accessible NMR parameters, including distances derived from nuclear Overhauser effect (NOE) intensities, torsion-angle dependent homonuclear and heteronuclear scalar coupling constants, projection-angle-dependent cross-correlated relaxation rates and residual dipolar couplings. The structure calculations were performed with the program CNS using the ARIA setup and protocols. The structure quality was further improved by a final refinement in explicit water using OPLS force field parameters for non-bonded interactions and charges. In addition, the 2′-hydroxyl groups have been assigned and their conformation has been analyzed based on NOE contacts. The structure currently defines a benchmark for the precision and accuracy amenable to RNA structure determination by NMR spectroscopy. Here, we discuss the impact of various NMR restraints on structure quality and discuss in detail the dynamics of this system as previously determined.  相似文献   

13.
Chemical shift assignment is the first step in all established protocols for structure determination of uniformly labeled proteins by NMR. The explosive growth in recent years of magic-angle spinning (MAS) solid-state NMR (SSNMR) applications is largely attributable to improved methods for backbone and side-chain chemical shift correlation spectroscopy. However, the techniques developed so far have been applied primarily to proteins in the size range of 5–10 kDa, despite the fact that SSNMR has no inherent molecular weight limits. Rather, the degeneracy inherent to many 2D and 3D SSNMR spectra of larger proteins has prevented complete unambiguous chemical shift assignment. Here we demonstrate the implementation of 4D backbone chemical shift correlation experiments for assignment of solid proteins. The experiments greatly reduce spectral degeneracy at a modest cost in sensitivity, which is accurately described by theory. We consider several possible implementations and investigate the CANCOCX pulse sequence in detail. This experiment involves three cross polarization steps, from H to CA[i], CA[i] to N[i], and N[i] to C′[i−1], followed by a final homonuclear mixing period. With short homonuclear mixing times (<20 ms), backbone correlations are observed with high sensitivity; with longer mixing times (>200 ms), long-range correlations are revealed. For example, a single 4D experiment with 225 ms homonuclear mixing time reveals ∼200 uniquely resolved medium and long-range correlations in the 56-residue protein GB1. In addition to experimental demonstrations in the 56-residue protein GB1, we present a theoretical analysis of anticipated improvements in resolution for much larger proteins and compare these results in detail with the experiments, finding good agreement between experiment and theory under conditions of stable instrumental performance.  相似文献   

14.
15.
The self-complementary oligonucleotide CGCATATATGCG was used as a model to establish the binding interactions of antitumor molybdenocene dichloride and DNA. The free dodecamer was first characterized using 1H, NOESY, and DQF-COSY NMR experiments, which enable to pinpoint the guanines and adenines as well as the cytosines and thymines signals in the aromatic region. Molybdenocene dichloride was characterized in saline and buffer solutions as function of pH by 1H NMR spectroscopy. In 10 mM NaCl/D2O solution at pH of 6.5 and above, Cp2Mo(OD)(D2O)+ is in equilibrium with its dimeric species, [Cp2Mo(μ-OH)2MoCp2]2+. In 25 mM Tris/4 mM NaCl/D2O at physiological pH, a new stable species is formed, coordinated by the buffer, Tris(hydroxymethyl)aminomethane. The interactions of molybdenocene dichloride species with CGCATATATGCG were studied at different pH. At pH 6.5, in 4 mM NaCl/D2O solution, 1H NMR spectra of CGCATATATGCG exhibit downfield shifts in the signals associated mainly to adenines and guanines, upon addition of molybdenocene dichloride. At pH 7.4, in 25 mM Tris/4 mM NaCl/D2O, molybdenocene species causes broadening and small downfield shifts to the purines and pyrimidine signals, suggesting that molybdenocene dichloride can get engaged in binding interactions with the oligonucleotide in a weak manner. 31P NMR spectra of these interactions at pH 7.4 showed no changes associated to Mo(IV)-OP coordination, indicating that molybdenocene–oligonucleotide binding interactions are centered, most likely, on the bases. Cyclic voltammetry titration showed a 4.9% of molybdenocene–oligonucleotide interaction. This implicates that possible binding interactions with DNA are weak.  相似文献   

16.
The unambiguous assignment of the nuclear magnetic resonance (NMR) signals of the alpha-substituents of the haems in the tetrahaem cytochrome isolated from Shewanella frigidimarina NCIMB400, was made using a combination of homonuclear and heteronuclear experiments. The paramagnetic (13)C shifts of the nuclei directly bound to the porphyrin of each haem group were analysed in the framework of a model for the haem electronic structure. The analysis yields g-tensors for each haem, which allowed the assignment of some electron paramagnetic resonance (EPR) signals to specific haems, and the orientation of the magnetic axes relative to each haem to be established. The orientation of the axial ligands of the haems was determined semi-empirically from the NMR data, and the structural results were compared with those of the homologous tetrahaem cytochrome from Shewanella oneidensis MR-1 showing significant similarities between the two proteins.  相似文献   

17.
The molecular tumbling of small unilamellar vesicles is not fast enough to enable the detection of (1)H NMR signals of molecules associated with phospholipids. We show that relatively fast kinetic exchange of the interacting molecules is able to induce a strong decrease of the residual homonuclear dipolar coupling, allowing the acquisition of sharp signals. At low molecule/lipids molecular ratio, this can be lead to signal broadening due to exchange at intermediate rates on the NMR chemical timescale. However, proton resonances can be easily detected when sufficient lipids are added to prevent the occurrence of any free compounds in solution. This is demonstrated, using lipid signal suppression, in the case of paramagnetic porphyrin derivatives as well as diamagnetic hematoporphyrin. Since several peptides and proteins are expected to be associated with lipids having relatively fast dynamics, this study addresses, as a first example, the interaction of cytochrome c.  相似文献   

18.
Transcarboxylase (TC) from Propionibacterium shermanii, a biotin-dependent enzyme, catalyzes the transfer of a carboxyl group from methylmalonyl-CoA to pyruvate in two partial reactions. Within the multisubunit enzyme complex, the 1.3S subunit functions as the carboxyl group carrier. The 1.3S is a 123-amino acid polypeptide (12.6 kDa), to which biotin is covalently attached at Lys 89. We have expressed 1.3S in Escherichia coli with uniform 15N labeling. The backbone structure and dynamics of the protein have been characterized in aqueous solution by three-dimensional heteronuclear nuclear magnetic resonance (NMR) spectroscopy. The secondary structure elements in the protein were identified based on NOE information, secondary chemical shifts, homonuclear 3J(HNHalpha) coupling constants, and amide proton exchange data. The protein contains a predominantly disordered N-terminal half, while the C-terminal half is folded into a compact domain comprising eight beta-strands connected by short loops and turns. The topology of the C-terminal domain is consistent with the fold found in both carboxyl carrier and lipoyl domains, to which this domain has approximately 26-30% sequence similarity.  相似文献   

19.
The solution structure of the phosphocarrier protein, HPr, from Bacillus subtilis has been determined by analysis of two-dimensional (2D) NMR spectra acquired for the unphosphorylated form of the protein. Inverse-detected 2D (1H-15N) heteronuclear multiple quantum correlation nuclear Overhauser effect (HMQC NOESY) and homonuclear Hartmann-Hahn (HOHAHA) spectra utilizing 15N assignments (reported here) as well as previously published 1H assignments were used to identify cross-peaks that are not resolved in 2D homonuclear 1H spectra. Distance constraints derived from NOESY cross-peaks, hydrogen-bonding patterns derived from 1H-2H exchange experiments, and dihedral angle constraints derived from analysis of coupling constants were used for structure calculations using the variable target function algorithm, DIANA. The calculated models were refined by dynamical simulated annealing using the program X-PLOR. The resulting family of structures has a mean backbone rmsd of 0.63 A (N, C alpha, C', O atoms), excluding the segments containing residues 45-59 and 84-88. The structure is comprised of a four-stranded antiparallel beta-sheet with two antiparallel alpha-helices on one side of the sheet. The active-site His 15 residue serves as the N-cap of alpha-helix A, with its N delta 1 atom pointed toward the solvent to accept the phosphoryl group during the phosphotransfer reaction with enzyme I. The existence of a hydrogen bond between the side-chain oxygen atom of Tyr 37 and the amide proton of Ala 56 is suggested, which may account for the observed stabilization of the region that includes the beta-turn comprised of residues 37-40. If the beta alpha beta beta alpha beta (alpha) folding topology of HPr is considered with the peptide chain polarity reversed, the protein fold is identical to that described for another group of beta alpha beta beta alpha beta proteins that include acylphosphatase and the RNA-binding domains of the U1 snRNP A and hnRNP C proteins.  相似文献   

20.
The analysis of the rotational diffusion of a molecule using homonuclear NMR is investigated. The homonuclear longitudinal and transverse cross-relaxation rates, which can be quantitatively measured using off-Resonance Rotating frame nuclear Overhauser Effect Spectroscopy (ROESY), are used to build a distribution, which exhibits a solid-state-like pattern characteristic of the diffusion tensor. The distributions of the antimicrobial peptide ranalexin in water and in 30% of trifluoracetic acid (TFE) are compared, and the peptide rotational diffusion is shown to be more isotropic in water than in 30% TFE. This difference is further supported by the analysis of NMR ranalexin conformers in 30% TFE, and by the analysis of a molecular dynamics simulation of peptide in water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号