首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The existence of an external hexammineruthenium-stimulated NADH oxidase in rat liver mitochondria is postulated. This enzyme is localized on the outer surface of the inner mitochondrial membrane, is specific for NADH and requires oxygen. The apparent affinity of the enzyme for NADH amounts to about 4 microM. Furthermore, the enzyme is characterized by an alkaline pH optimum and a linear Arrhenius plot (14 kJ/mol). The electron transfer from NADH to oxygen is not linked with the respiratory chain but is connected with the formation of superoxide radicals.  相似文献   

2.
We have examined the steady-state redox behavior of cytochrome c (Fec), Fea, and CuA of cytochrome c oxidase during steady-state turnover in intact rat liver mitochondria under coupled and uncoupled conditions. Ascorbate was used as the reductant and TMPD (N,N,N',N'-tetramethyl-1,4-phenylenediamine) as the redox mediator. After elimination of spectroscopic interference from the oxidized form of TMPD, we found that Fea remains significantly more oxidized than previously thought. During coupled turnover, CuA always appears to be close to redox equilibrium with Fec. By increasing the amount of TMPD, both centers can be driven to fairly high levels of reduction while Fea remains relatively oxidized. The reduction level at Fea is close to a linear function of the enzyme turnover rate, but the levels at Fec and CuA do not keep pace with enzyme turnover. This behavior can be explained in terms of a redox equilibrium among Fec, CuA, and Fea, where Fea is the electron donor to the oxygen reduction site, but only if Fea has an effective Em (redox midpoint potential) of 195 mV. This is too low to be accounted for on the basis of nonturnover measurements and the effects of the membrane potential. However, if there is no equilibrium, the internal CuA----Fea electron-transfer rate constant must be slow in the time average (about 200 s-1). Other factors which might contribute to such a low Em are discussed. In the presence of uncoupler, this situation changes dramatically. Both Fec and CuA are much less reduced; within the resolution of our measurements (about 10%), we were unable to measure any reduction of CuA. Fea and CuA remain too oxidized to be in redox equilibrium with Fec during steady-state turnover. Furthermore, our results indicate that, in the uncoupled system, the (time-averaged) internal electron-transfer rate constants in cytochrome oxidase must be of the order of 2500 s-1 or higher. When turnover is slowed by azide, the relative redox levels at Fea and Fec are much closer to those predicted from nonturnover measurements. In presence of uncouplers, Fea is always more reduced than Fec, but in the absence of uncouplers, the two centers track together. Unlike the uninhibited, coupled system, the redox behavior here is consistent with the known effect of the electrical membrane potential on electron distribution in the enzyme. Interestingly, in these circumstances (azide and uncoupler present), Fea behaves as if it were no longer the kinetically controlling electron donor to the bimetallic center.  相似文献   

3.
When isolated mitochondria which have been labeled with [3H]leucine are solubilized and treated with anti-serum specific for cytochrome c oxidase, labeled polypeptides which correspond to the three largest polypeptides of this enzyme are immunoprecipitated. This indicates that the three largest polypeptides of cytochrome c oxidase which have Mr of 66,000, 39,000, and 23,000 are synthesized by isolated mitochondria whereas the three smallest ones which have Mr of 14,000, 12,500, and 10,000 are not. The smallest polypeptides are probably synthesized on cytoplasmic ribosomes as has been demonstrated in other systems by in vivo studies. These results are the first demonstration that isolated mammalian mitochondria are capable of synthesizing some of their own polypeptide components. The antiserum used in this study was prepared to highly purified cytochrome c oxidase (12.4 nmol of heme a + a3/mg of protein) from rat liver mitochondria. This antiserum gives a single precipitin line when tested by the Ouchterlony double diffusion technique. Its specificity has been demonstrated by the fact that it: 1) only precipitates heme a + a3, not hemes b, c, or c1, when added to solubilized mitochondria, 2) inhibits cytochrome c oxidase activity at least 85%, and 3) precipitates only those polypeptides found in purified cytochrome c oxidase when added to solubilized mitochondria labeled in vivo.  相似文献   

4.
Cytochrome c oxidase has been purified from rat liver mitochondria using affinity chromatography. The preparation contains 10.5 to 13.4 nmol of heme a + a3 per mg of protein and migrates as a single band during polyacrylamide gel electrophoresis under nondissociating conditions. It has a heme a/a3 ratio of 1.12 and is free of cytochromes b, c, and c1 as well as the enzymes, NADH dehydrogenase, succinic dehydrogenase, coenzyme Q-cytochrome c reductase, and ATPase. The enzyme preparation consists of six polypeptides having apparent Mr of 66,000, 39,000, 23,000, 14,000, 12,500 and 10,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The peptide composition is similar to those found for cytochrome c oxidases from other systems. The enzymatic activity of the purified enzyme is completely inhibited by carbon monoxide or cyanide, partially inhibited by Triton X-100 and dramatically enhanced by Tween 80 or phospholipids.  相似文献   

5.
Quantitation of cytochrome c release from rat liver mitochondria   总被引:5,自引:0,他引:5  
The apoptogenic protein cytochrome c can be quantitated by reverse-phase HPLC, but this method is not utilized by those who investigate mechanisms of cell death. Here, we extend the sensitivity of the method to exceed that available from immunogenic approaches and report specific procedures for applying the method to preparations of intact mitochondria, and to supernatants and pellets that arise from mitochondrial incubations. The detection limit corresponds to 0.6% of total cytochrome c found in 100 microg of rat liver mitochondrial protein, or to all of the cytochrome c that is expected in approximately 6000 hepatocytes. A single determination can be completed in 20 min, compared to a time scale of days for Western blotting methods, or hours for ELISA-based methods. The procedures are illustrated by experiments that determine the amount of cytochrome c released following the mitochondrial permeability transition as a function of medium ionic strength, and by long-term incubations of intact mitochondria in the presence and absence of an exogenous oxidizable substrate. Swelling and the release of adenylate kinase activity have been determined simultaneously to show how the data can be applied to evaluate the role of outer membrane disruption in mechanisms that release cytochrome c.  相似文献   

6.
Rat liver mitochondria were loaded with cytochrome c by incubation with large amounts of [14C]apocytochrome c. After being washed they were incubated with either more apocytochrome c or cytochrome c. There was no release of labeled proteins from the mitochondria when incubated with cytochrome c. However, there was when incubated with apocytochrome c. The material released showed only one radioactive band which migrated as cytochrome c. Also no release of proteins other than cytochrome c was detected when liver mitochondria isolated from rats injected with [35S]methionine were incubated with apocytochrome c. These results suggest that the level and possibly the turnover of cytochrome c in rat liver mitochondria is regulated by the entry of apocytochrome c into mitochondria.  相似文献   

7.
Mitochondria from glucagon-treated rats oxidize succinate, but not ascorbate plus tetramethylphenylenediamine, faster in the uncoupled state than do control mitochondria. The rate of O(2) uptake in the presence of both substrates is equal to the sum of the rates of the O(2) uptake in the presence of either substrate alone. It is concluded that the mitochondrial respiratory chain is limited at some point between cytochromes b and c and that this step is regulated by glucagon. Measurement of the cytochrome spectra under uncoupled conditions in the presence of succinate and rotenone demonstrates a crossover between cytochromes c and c(1) when control mitochondria are compared with those from glucagon-treated rats, cytochrome c being more oxidized and cytochrome c(1) more reduced in control mitochondria. Under conditions where pyruvate metabolism is studied the control mitochondria are generally more oxidized than those from glucagon-treated rats, the redox state of cytochrome b-566 correlating with the rate of pyruvate metabolism in sucrose medium. However, when the redox state of the mitochondria is taken into account, a crossover between cytochromes c and c(1) is again apparent. The spectra of the b cytochromes are complex, but cytochrome b-562 appears to become more reduced relative to cytochrome b-566 in mitochondria from glucagon-treated rats than in control mitochondria. This can be explained by the existence of a more alkaline matrix in glucagon-treated rats, the redox potential for cytochrome b being pH-sensitive. It is concluded that glucagon stimulates electron flow between cytochromes c(1) and c. The physiological significance of these findings is discussed.  相似文献   

8.
Biological actions of retinoids on modulation of cellular gene expression by nuclear receptors are widely known. Recently, extra-nuclear effects of retinoids have been proposed, but remain to be better elucidated. Considering that retinoids induce apoptosis in tumor cells by an unknown mechanism, and that mitochondria play a key role in controlling apoptosis via cytochrome c (cyt c) release, we exposed rat liver mitochondria to 3-40 microM of retinol (vitamin A), and observed that retinol causes mitochondrial permeability transition (MPT) and cyt c release, in a concentration-dependent pattern. Increased superoxide anion generation and lipoperoxidation were also observed. Cyclosporin A or trolox co-administration reverted all parameters tested. In view of these findings, we conclude that retinol induces mitochondria oxidative damage, leading to MPT and cyt c release by opening of the permeability transition pore, thus suggesting a putative mechanism of apoptosis activation by retinol.  相似文献   

9.
Haem a and cytochrome c were isotopically labelled in mitochondria from rat heart and liver after injection of delta-amino[2,3-(3)H(2)]laevulate, a specific haem precursor. [guanido-(14)C]Arginine or l-[4,5-(3)H(2)]leucine were used to label mitochondrial proteins. Half-lives were measured from biological decay in vivo and were similar (5.5-6.2 days) for haem a, cytochrome c and [(14)C]arginine-labelled proteins. Labelling of hepatic mitochondrial proteins with [(3)H(2)]leucine resulted in a prolonged apparent half-life.  相似文献   

10.
The ATP-Mg/Pi carrier in liver mitochondria is activated by micromolar Ca2+ and mediates net adenine nucleotide transport into and out of the mitochondrial matrix. The purpose of this study was to characterize certain features of ATP-Mg/Pi carrier activity that are essential for understanding how the mitochondrial adenine nucleotide content is regulated. The relative importance of ATP and ADP as transport substrates was investigated using specific trap assays to measure their separate rates of carrier-mediated efflux with Pi as the external counterion. Under energized conditions ATP efflux accounted for 88% of total ATP+ADP efflux. With oligomycin present to lower the matrix ATP/ADP ratio, ATP efflux was eliminated and ADP efflux was relatively unaffected. Mg2+ was stoichiometrically required for ATP influx and is probably transported simultaneously with ATP. Ca2+ and Mn2+ could substitute for the stoichiometric Mg2+ requirement. ADP influx and Pi-induced adenine nucleotide efflux were unaffected by external Mg2+. Experiments with Pi analogues suggested that Pi is transported as the divalent anion, HPO4(2-). The results show that ATP-Mg and divalent Pi are the major transport substrates; the most probable transport mechanism for the ATP-Mg/Pi carrier is an electroneutral exchange. The results are consistent with the hypothesis that the direction and magnitude of net adenine nucleotide movements are determined mainly by the (ATP-Mg)2- and HPO4(2-) concentration gradients across the inner mitochondrial membrane.  相似文献   

11.
The possibility of direct oxidation of external NADH in rat liver mitochondria and of the inner membrane potential generation in this process is still not clear. In the present work, the energy-dependent swelling of mitochondria in the medium containing valinomycin and potassium acetate was measured as one of the main criteria of the proton-motive force generation by complex III, complex IV, and both complexes III and IV of the respiratory chain. Mitochondria swelling induced by external NADH oxidation was compared with that induced by succinate or ferrocyanide oxidation, or by electron transport from succinate to ferricyanide. Mitochondria swelling, nearly equal to that promoted by ferrocyanide oxidation, was observed under external NADH oxidation, but only after the outer mitochondrial membrane was ruptured as a result of the swelling-contraction cycle, caused by succinate oxidation and its subsequent inhibition. In this case, significantly accelerated intermembrane electron transport and well-detected inner membrane potential generation, in addition to mitochondria swelling, were also observed. Presented results suggest that exogenous NADH and cytochrome c do not support the inner membrane potential generation in intact rat liver mitochondria, because the external NADH-cytochrome c reductase system, oriented in the outer mitochondrial membrane toward the cytoplasm, is inaccessible for endogenous cytochrome c reduction; as well, the inner membrane cytochrome c oxidase is inaccessible for exogenous cytochrome c oxidation.  相似文献   

12.
M Bragadin  T Pozzan  G F Azzone 《Biochemistry》1979,18(26):5972-5978
The rate of aerobic Ca2+ transport is limited by the rate of the H+ pump rather than by the Ca2+ carrier. The kinetics of the Ca2+ carrier has therefore been studied by using the K+ diffusion potential as the driving force. The apparent Vmax of the Ca2+ carrier is, at 20 degrees C, about 900 nmol (mg of protein)-1 min-1, more than twice the rate of the H+ pump. The apparent Vmax is depressed by Mg2+ and Li+. This supports the view that the electrolytes act as noncompetitive inhibitors of the Ca2+ carrier. The degree of sigmoidicity of the kinetics of Ca2+ transport increases with the lowering of the temperature and proportionally with the concentration of impermeant electrolytes such as Mg2+ and Li+ but not choline. The effects of temperature and of electrolyte do not support the view that the sigmoidicity is due to modifications of the surface potential. Rather, they suggest that Ca2+ transport occurs through a multisubunit carrier, where cooperative phenomena are the result of ligand-induced conformational changes due to the interaction of several allosteric effectors with the carrier subunits. In contrast with La3+ which acts as a competitive inhibitor, Ruthenium Red affects the kinetics by inducing phenomena both of positive and of negative cooperativity. The Ruthenium Red induced kinetics has been reproduced through curve-fitting procedures by applying the Koshland sequential interaction hypothesis to a four-subunit Ca2+ carrier model.  相似文献   

13.
15 min cold exposure of rats adapted to cold results in switching on a pathway of the fast oxidation of extramitochondrial NADH in the isolated liver mitochondria. This pathway is sensitive to mersalyl and cyanide, resistant to amytal and antimycin A, and can be stimulated by dinitrophenol. A portion of the endogenous cytochrome c pool can easily be removed by washing mitochondria of the cold-exposed rats. A scheme is discussed, postulating desorption of the inner membrane-bound cytochrome c into intermembrane space of mitochondria, resulting in formation of a link between the non-phosphorylating NADH-cytochrome c reductase in the outer mitochondrial membrane and cytochrome c oxidase in the inner membrane. It is suggested that such an oxidative pathway is involved in the urgent heat production in liver in response to the cold treatment.  相似文献   

14.
Ruthenium red as a capsaicin antagonist.   总被引:15,自引:0,他引:15  
R Amann  C A Maggi 《Life sciences》1991,49(12):849-856
Definition of the physiological and pharmacological properties of primary afferent neurons by the use of capsaicin and its analogues (e.g. resiniferatoxin) has represented one of the most active areas of research of the last decade (1-4 for reviews). In the past 3 years many important advancements have been made in this field, dealing with: a) discovery of the capsaicin (or 'vanilloid' receptor (5); b) discovery of capsazepine as a competitive receptor antagonist at the vanilloid receptor (6); c) definition of the cation channel coupled with the vanilloid receptor and the ionic basis for excitation and "desensitization" of primary afferents by capsaicin and related substances (7,8) and d) discovery of ruthenium red as a functional capsaicin antagonist. The aim of the present article is to briefly review the pharmacology of ruthenium red as a capsaicin antagonist and attempting to define the usefulness and the limits of this substance as a tool in sensory neuron research.  相似文献   

15.
16.
17.
EGTA (ethanedioxybis(ethylamine)tetra-acetic acid) induced a release of Ca2+ from mitochondria isolated from both rat liver and rat heart that was inhibited by Ruthenium Red. The concentration of Ruthenium Red giving half-maximal inhibition was about 350 pmol/mg of protein, a value approximately 7 times greater than that giving half-maximal inhibition of the initial rate of Ca2+ transport. The EGTA-induced release of Ca2+ was temperature-dependent and was inhibited by the local anaesthetic, nupercaine.Pi, acetate, and tributyltin in the presence of Cl?, inhibited the Ruthenium Red-sensitive Ca2+ release induced by EGTA, whereas these agents enhanced the Ruthenium Red-insensitive release of Ca2+ induced by acetoacetate in liver and heart mitochondria and by Na+ in heart mitochondria.  相似文献   

18.
19.
15 min cold exposure of rats adapted to cold results in switching on a pathway of the fast oxidation of extramitochondrial NADH in the isolated liver mitochondria. This pathway is sensitive to mersalyl and cyanide, resistant to amytal and antimycin A, and can be stimulated by dinitrophenol. A portion of the endogenous cytochrome c pool can easily be removed by washing mitochondria of the cold-exposed rats.A scheme is discussed, postulating desorption of the inner membrane-bound cytochrome c into intermembrane space of mitochondria, resulting in formation of a link between the non-phosophorylating NADH-cytochrome c reductase in the outer mitochondrial membrane and cytochrome c oxidase in the inner membrane. It is suggested that such an oxidative pathway is involved in the urgent heat production in liver in response to the cold treatment.  相似文献   

20.
When rat liver mitochondria were suspended in 0.15 m KCl, the cytochrome c appeared to be solubilized from the binding site on the outside of the inner membrane and trapped in the intermembrane space. When the outer membrane of these mitochondria was disrupted with digitonin at a digitonin concentration of 0.15 mg/mg of protein, the solubilized cytochrome c could be released from mitochondria along with adenylate kinase. When mitochondria were suspended in 0.15 m KCl instead of 0.33 m sucrose, the ADPO ratio observed with succinate, β-hydroxybutyrate, malate + pyruvate or glutamate as substrates was little affected. A number of cycles of State 4-State 3-State 4 with ADP was observed. The respiratory control ratios, however, were decreased, particularly when glutamate was used as the substrate. Cytochrome c oxidase activity was also decreased to 55% when assayed using ascorbate + N,N,N′,N′-tetramethyl-p-phenylene-diamine (TMPD) as substrates. Suspension of mitochondria in 0.15 m KCl resulted in an enhancement of the very low NADH oxidation by intact mitochondria and a twofold enhancement of sulfite oxidation. Trapped cytochrome c in outer membrane vesicles prepared from untreated and trypsin-treated intact mitochondria was found to be readily reduced by NADH and suggests that some cytochrome b5 is located on the inner surface of the outer membrane. The enhanced NADH oxidase could therefore reflect the ability of cytochrome c to mediate intermembrane electron transport. The enhanced sulfite oxidase activity was sensitive to cyanide inhibition and coupled to oxidative phosphorylation (ADPO < 1) unlike the activity of mitochondria in sucrose medium. These results suggest that free cytochrome c in the intermembrane space can mediate electron transfer between the sulfite oxidase and the inner membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号