首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the analyses of HBV genomic DNA have traditionally been performed with commercial techniques, the high cost and long time consumed have hindered their applications in routinely diagnosis and prognosis of infection. We construct peptide nucleic acid (PNA) piezoelectric biosensor for real-time monitoring of hybridization of hepatitis B virus (HBV) genomic DNA. The PNA probe can combine to target DNA sequences more effectively and specifically than a DNA probe. The PNA probe was designed and immobilized on the surface of the biosensor to substitute the conventional DNA probe for direct detection of HBV genomic DNA without previous amplification by PCR. The hybridization assay was completed in 50 min. The detection limit was 8.6 pg/L and the clinical specificity was 94.44% compared with real time-PCR (RT-PCR). The PNA probe was able to distinguish sequences that differ only in one base. Detection sensitivity can be improved and detection time can be decreased by adding RecA protein-coated complementary ssDNA which complement to HBV gene regions. The QCM system we designed has the advantages of being rapid, label-free and highly sensitive and can be a useful supplement to commercial assay methods in clinical chemistry.  相似文献   

2.
In the present study a peptide nucleic acid (PNA)-mediated polymerase chain reaction (PCR) clamping method was developed and applied to the detection of genetically modified organisms (GMO), to test PCR products for band identity and to obtain a semiquantitative evaluation of GMO content. The minimal concentration of PNA necessary to block the PCR was determined by comparing PCRs containing a constant amount of DNA in the presence of increasing concentration of target-specific PNA. The lowest PNA concentration at which specific inhibition took place, by the inhibition of primer extension and/or steric hindrance, was the most efficient condition. Optimization of PCR clamping by PNA was observed by testing five different PNAs with a minimum of 13 bp to a maximum of 15 bp, designed on the target sequence of Roundup Ready soybean. The results obtained on the DNA extracted from Roundup Ready soybean standard flour were verified also on DNA extracted from standard flours of maize GA21, Bt176, Bt11, and MON810. A correlation between the PNA concentration necessary for inducing PCR clamping and the percentage of the GMO target sequence in the sample was found.  相似文献   

3.
The efficacy of PNA vs DNA oligomers for the recovery of femtomolar concentrations of 16S rDNA targets was determined with solution- and mixed-phase hybridization formats and limiting dilution quantitative PCR. Several results contradict existing perceptions of expected PNA behavior deduced from hybridization studies with oligonucleotide targets at high concentration. For example, DNA probes in the solution hybridization format performed as well as or better than PNA probes under high- or low-salt conditions, regardless of hybridization time or target size. In the mixed-phase hybridization format, however, PNA probes showed certain advantages, with more rapid and efficient binding/recovery of target nucleic acids regardless of target size. Recovery of target DNA with PNA probes was always more efficient in low-salt (20 mM in Na(+)) than high-salt (400 mM in Na(+-)) phosphate buffer. Recovery of target DNA by PNA probes was enhanced in the presence of excess, nontarget DNA, and differences in PNA efficacy under low- or high-salt conditions vanquished. In contrast, DNA probe performance was unaffected by the presence or absence of exogenous DNA in both solution- and mixed-phase hybridization formats. The absolute recovery and detection limit of the affinity purification method with either DNA or PNA probes was approximately 10(2) input target molecules at zeptamolar concentrations.  相似文献   

4.
Bispeptide nucleic acids (bis-PNAs; PNA clamps), PNA oligomers, and DNA oligonucleotides were evaluated as affinity purification reagents for subfemtomolar 16S ribosomal DNA (rDNA) and rRNA targets in soil, sediment, and industrial air filter nucleic acid extracts. Under low-salt hybridization conditions (10 mM NaPO(4), 5 mM disodium EDTA, and 0.025% sodium dodecyl sulfate [SDS]) a PNA clamp recovered significantly more target DNA than either PNA or DNA oligomers. The efficacy of PNA clamps and oligomers was generally enhanced in the presence of excess nontarget DNA and in a low-salt extraction-hybridization buffer. Under high-salt conditions (200 mM NaPO(4), 100 mM disodium EDTA, and 0.5% SDS), however, capture efficiencies with the DNA oligomer were significantly greater than with the PNA clamp and PNA oligomer. Recovery and detection efficiencies for target DNA concentrations of > or =100 pg were generally >20% but depended upon the specific probe, solution background, and salt condition. The DNA probe had a lower absolute detection limit of 100 fg of target (830 zM [1 zM = 10(-21) M]) in high-salt buffer. In the absence of exogenous DNA (e.g., soil background), neither the bis-PNA nor the PNA oligomer achieved the same absolute detection limit even under a more favorable low-salt hybridization condition. In the presence of a soil background, however, both PNA probes provided more sensitive absolute purification and detection (830 zM) than the DNA oligomer. In varied environmental samples, the rank order for capture probe performance in high-salt buffer was DNA > PNA > clamp. Recovery of 16S rRNA from environmental samples mirrored quantitative results for DNA target recovery, with the DNA oligomer generating more positive results than either the bis-PNA or PNA oligomer, but PNA probes provided a greater incidence of detection from environmental samples that also contained a higher concentration of nontarget DNA and RNA. Significant interactions between probe type and environmental sample indicate that the most efficacious capture system depends upon the particular sample type (and background nucleic acid concentration), target (DNA or RNA), and detection objective.  相似文献   

5.
A detection technique with a DNA probe was developed for the bloom‐forming alga Alexandrium affine harvested in Japan. The design of this probe was based on the sequence polymorphism within the 28S ribosomal DNA (rDNA) of this strain using the BIAcore? 2000 biosensor, which determines surface plasmon resonance. The specific DNA sequence in 28S rDNA for A. affine was determined by sequence data analysis, and a probe was designed for the detection of A. affine. A fragment of the 28S rDNA from A. affine was amplified by polymerase chain reaction and applied to the BIAcore? sensor system, and the target DNA was selectively recognized by species‐specific hybridization using two DNA probes: a fluorescein isothiocyanate (FITC)‐labeled probe and a biotin‐labeled DNA probe. Using FITC‐labeled anti‐immunogloblin G antibody, enhancement of the response for the target DNA can be detected directly as a resonant unit change. In this detection method, a difference within only 20 base pairs of the target could be detected, and specific detection of A. affine was achieved intraspecifically.  相似文献   

6.
Peptide Nucleic Acids (PNA) is a new type of DNA analogue with a peptide backbone. We developed a rapid identification system of Escherichia. coli O157:H7 using PNA mediated PCR clamping. Firstly, we confirmed a single nucleotide alteration in the uidA gene (T93G), which is specific to E. coli O157: H7. We designed forward mutant DNA primer, wild type PNA, and a reverse DNA primer corresponding to the uidA sequence. PCR cycle consisted of four steps including dual annealing temperatures, 57 degrees C and 45 degrees C. Among 20 E. coli strains with various serotypes and 4 neighboring strains, the amplified bands (517 bp) were detected only in E. coli O157:H7 strains. PNA has specifically inhibited the PCR amplification from a wild type uidA gene. We successfully developed a multiplex PCR system, which detects both shigatoxin (stx) and uidA genes at once, to get reliable results by easier and rapid operation. We also analyzed kinetic parameters of PNA/DNA association using surface plasmon resonance and melting temperature using fluorescence resonance energy transfer (FRET). We discussed a selection mechanism of PCR clamping from these results.  相似文献   

7.
The synthesis and characterization of isotopomer tandem nucleic acid mass tag–peptide nucleic acid (TNT–PNA) conjugates is described along with their use as electrospray ionisation-cleavable (ESI-Cleavable) hybridization probes for the detection and quantification of target DNA sequences by electrospray ionisation tandem mass spectrometry (ESI-MS/MS). ESI-cleavable peptide TNT isotopomers were introduced into PNA oligonucleotide sequences in a total synthesis approach. These conjugates were evaluated as hybridization probes for the detection and quantification of immobilized synthetic target DNAs using ESI-MS/MS. In these experiments, the PNA portion of the conjugate acts as a hybridization probe, whereas the peptide TNT is released in a collision-based process during the ionization of the probe conjugate in the electrospray ion source. The cleaved TNT acts as a uniquely resolvable marker to identify and quantify a unique target DNA sequence. The method should be applicable to a wide variety of assays requiring highly multiplexed, quantitative DNA/RNA analysis, including gene expression monitoring, genetic profiling and the detection of pathogens.  相似文献   

8.
AIMS: To develop a digoxigenin (DIG)-labeled peptide nucleic acid (PNA) probe for the detection of Lactobacillus-related genera amongst eubacterial amplicons obtained from vaginal samples using denaturing gradient gel electrophoresis (DGGE) blots. METHODS AND RESULTS: Part of the 16S rRNA gene sequence was used as a target for the PNA probe. After confirming probe specificity using chromosomal DNA from species and isolates that have been detected in the urogenital tract, it was successfully used to detect lactobacilli amplicons generated using eubacterial-specific 16S rRNA gene-targeted primers from vaginal tract samples immobilized on membranes from DGGE. CONCLUSIONS: The Lactobacillus-specific PNA probe could distinguish between DNA fragments from lactobacilli in a DGGE gel from other bacterial species, including those that migrated to a similar position. SIGNIFICANCE AND IMPACT OF THE STUDY: The use of the DIG-labelled PNA probe on blots of eubacterial PCR products from DGGE gels can be used to specifically detect lactobacilli in complex vaginal samples.  相似文献   

9.
The synthesis and characterization of isotopomer tandem nucleic acid mass tag-peptide nucleic acid (TNT-PNA) conjugates is described along with their use as electrospray ionisation-cleavable (ESI-Cleavable) hybridization probes for the detection and quantification of target DNA sequences by electrospray ionisation tandem mass spectrometry (ESI-MS/MS). ESI-cleavable peptide TNT isotopomers were introduced into PNA oligonucleotide sequences in a total synthesis approach. These conjugates were evaluated as hybridization probes for the detection and quantification of immobilized synthetic target DNAs using ESI-MS/MS. In these experiments, the PNA portion of the conjugate acts as a hybridization probe, whereas the peptide TNT is released in a collision-based process during the ionization of the probe conjugate in the electrospray ion source. The cleaved TNT acts as a uniquely resolvable marker to identify and quantify a unique target DNA sequence. The method should be applicable to a wide variety of assays requiring highly multiplexed, quantitative DNA/RNA analysis, including gene expression monitoring, genetic profiling and the detection of pathogens.  相似文献   

10.
We have constructed light-up probes for nucleic acid detection. The light-up probe is a peptide nucleic acid (PNA) oligonucleotide to which the asymmetric cyanine dye thiazole orange (TO) is tethered. It combines the excellent hybridization properties of PNA and the large fluorescence enhancement of TO upon binding to DNA. When the PNA hybridizes to target DNA, the dye binds and becomes fluorescent. Free probes have low fluorescence, which may increase almost 50-fold upon hybridization to complementary nucleic acid. This makes the light-up probes particularly suitable for homogeneous hybridization assays, where separation of the bound and free probe is not necessary. We find that the fluorescence enhancement upon hybridization varies among different probes, which is mainly due to variations in free probe fluorescence. For eight probes studied the fluorescence quantum yield at 25 degrees C in the unbound state ranged from 0.0015 to 0.08 and seemed to depend mainly on the PNA sequence. The binding of the light-up probes to target DNA is highly sequence specific and a single mismatch in a 10-mer target sequence was readily identified.  相似文献   

11.
The work evaluated a series of approaches to optimise detection of polymerase chain reaction (PCR) amplified DNA samples by an optical sensor based on surface plasmon resonance (SPR) (BiacoreX). The optimised procedure was based on an asymmetric PCR amplification system to amplify predominantly one DNA strand, containing the sequence complementary to a specific probe. The study moved into two directions, aiming to improve the analytical performance of SPR detection in PCR amplified products. One approach concerned the application of new strategies at the level of PCR, i.e. asymmetric PCR to obtain ssDNA amplified fragments containing the target capable of hybridisation with the immobilised complementary probe. The other strategy focused on the post-PCR amplification stage. Optimised denaturing conditions were applied to both symmetrically and asymmetrically amplified fragments. The effective combination of the two strategies allowed a rapid and specific hybridisation reaction. The developed method was successfully applied in the detection of genetically modified organisms.  相似文献   

12.
Chiou CC  Luo JD  Chen TL 《Nature protocols》2006,1(6):2604-2612
The detection of rare mutant DNA from a background of wild-type alleles usually requires laborious manipulations, such as restriction enzyme digestion and gel electrophoresis. Here, we describe a protocol for homogeneous detection of rare mutant DNA in a single tube. The protocol uses a peptide nucleic acid (PNA) as both PCR clamp and sensor probe. The PNA probe binds tightly to perfectly matched wild-type DNA template but not to mismatched mutant DNA sequences, which specifically inhibits the PCR amplification of wild-type alleles without interfering with the amplification of mutant DNA. A fluorescein tag (which undergoes fluorescence resonance energy transfer with the adjacent fluorophore of an anchor probe when both are annealed to the template DNA) also allows the PNA probe to generate unambiguous melting curves to detect mutant DNA during real-time fluorescent monitoring. The whole assay takes about only 1 h. This protocol has been used for detecting mutant K-ras DNA and could be applied to the detection of other rare mutant DNAs.  相似文献   

13.
In this paper we report an innovative and unconventional method based on circular dichroism for the identification of peanut DNA in food, which can be detected after PCR amplification at the nanomolar level by using an achiral PNA probe complementary to a tract of the peanut Ara h 2 gene and an achiral 3,3'-diethylthiadicarbocyanine dye [DiSC(2)(5)]. Peanuts are one of the most common causes of severe allergic reactions to foods and are particularly dangerous when they are "hidden" (undeclared) in food. For better protection of consumers, detection methods are required to specifically detect the presence of hidden allergens in a wide variety of food items. Alternative to the detection of the proteins is the determination of species-specific DNA, which is more resistant to technological treatments. PNAs are very specific probes able to recognize DNA sequences with high affinity and evidence for the binding can be obtained by using the DiSC(2)(5) dye, which aggregates onto the PNA-DNA duplex giving rise to a characteristic visibile band at 540 nm. Because the PNA-DNA duplex is in a right-handed helical conformation, the aggregation of the dye to the duplex gives also rise to a strong CD signal in the 500-600 nm region with a strong exciton coupling due to the formation of multimeric species, since the handedness of the helix is transferred to the dye aggregate. The dye does not interact with the free single-stranded DNA and although aggregating on the achiral PNA, this interaction is obviously not detectable by circular dichroism. Thus, only the formation of the PNA-DNA duplex, which takes place only upon specific Watson-Crick hydrogen binding between the PNA and the DNA bases, is detected, ensuring a very high specificity and sensitivity. The method has been optimized in a model system by using a synthetic oligonucleotide complementary to the PNA probe, showing that the intensity of the signal is linearly related to the amount of the DNA. The optimized method has been applied to the identification and quantitation of DNA extracted and amplified by PCR from peanuts and from peanut-containing foods, allowing for a very sensitive detection at a very low level (few pmol).  相似文献   

14.
Detecting point mutation of human cancer cells quickly and accurately is gaining in importance for pathological diagnosis and choice of therapeutic approach. In the present study, we present novel methodology, peptide nucleic acid—locked nucleic acid mediated loop-mediated isothermal amplification (PNA-LNA mediated LAMP), for rapid detection of KRAS mutation using advantages of both artificial DNA and LAMP. PNA-LNA mediated LAMP reactions occurred under isothermal temperature conditions of with 4 primary primers set for the target regions on the KRAS gene, clamping PNA probe that was complimentary to the wild type sequence and LNA primers complementary to the mutated sequences. PNA-LNA mediated LAMP was applied for cDNA from 4 kinds of pancreatic carcinoma cell lines with or without KRAS point mutation. The amplified DNA products were verified by naked-eye as well as a real-time PCR equipment. By PNA-LNA mediated LAMP, amplification of wild type KRAS DNA was blocked by clamping PNA probe, whereas, mutant type KRAS DNA was significantly amplified within 50 min. Mutant alleles could be detected in samples which diluted until 0.1% of mutant-to-wild type ratio. On the other hand, mutant alleles could be reproducibly with a mutant-to-wild type ratio of 30% by direct sequencing and of 1% by PNA-clamping PCR. The limit of detection (LOD) of PNA-LNA mediated LAMP was much lower than the other conventional methods. Competition of LNA clamping primers complementary to two different subtypes (G12D and G12V) of mutant KRAS gene indicated different amplification time depend on subtypes of mutant cDNA. PNA-LNA mediated LAMP is a simple, rapid, specific and sensitive methodology for the detection of KRAS mutation.  相似文献   

15.
A method for the rapid detection of verotoxin-producing Escherichia coli O157:H7 in stools was evaluated. Strains possessing Shiga toxin-2 (stx-2) genes were isolated from stool samples and amplified using oligonucleotide primers. Stools spiked with cultured E. coli O157:H7 (strain 298 or strain 1646) were detected to be polymerase chain reaction (PCR) positive at 10(2) cfu per 0.1 g of stool. Stool samples from patients and healthy carriers showed a high correlation between positive results for a PCR and the presence of verotoxin-producing E. coli O157:H7, confirmed by isolation of serotype O157:H7 on sorbitol MacConkey medium (10 of 10 stool samples). These PCR products could be detected using a BIAcore 2000 surface plasmon resonance device using peptide nucleic acid as a sensor probe. In this report we use this method for the rapid detection of DNA from significant pathogenic organisms.  相似文献   

16.
Bispeptide nucleic acids (bis-PNAs; PNA clamps), PNA oligomers, and DNA oligonucleotides were evaluated as affinity purification reagents for subfemtomolar 16S ribosomal DNA (rDNA) and rRNA targets in soil, sediment, and industrial air filter nucleic acid extracts. Under low-salt hybridization conditions (10 mM NaPO4, 5 mM disodium EDTA, and 0.025% sodium dodecyl sulfate [SDS]) a PNA clamp recovered significantly more target DNA than either PNA or DNA oligomers. The efficacy of PNA clamps and oligomers was generally enhanced in the presence of excess nontarget DNA and in a low-salt extraction-hybridization buffer. Under high-salt conditions (200 mM NaPO4, 100 mM disodium EDTA, and 0.5% SDS), however, capture efficiencies with the DNA oligomer were significantly greater than with the PNA clamp and PNA oligomer. Recovery and detection efficiencies for target DNA concentrations of ≥100 pg were generally >20% but depended upon the specific probe, solution background, and salt condition. The DNA probe had a lower absolute detection limit of 100 fg of target (830 zM [1 zM = 10−21 M]) in high-salt buffer. In the absence of exogenous DNA (e.g., soil background), neither the bis-PNA nor the PNA oligomer achieved the same absolute detection limit even under a more favorable low-salt hybridization condition. In the presence of a soil background, however, both PNA probes provided more sensitive absolute purification and detection (830 zM) than the DNA oligomer. In varied environmental samples, the rank order for capture probe performance in high-salt buffer was DNA > PNA > clamp. Recovery of 16S rRNA from environmental samples mirrored quantitative results for DNA target recovery, with the DNA oligomer generating more positive results than either the bis-PNA or PNA oligomer, but PNA probes provided a greater incidence of detection from environmental samples that also contained a higher concentration of nontarget DNA and RNA. Significant interactions between probe type and environmental sample indicate that the most efficacious capture system depends upon the particular sample type (and background nucleic acid concentration), target (DNA or RNA), and detection objective.  相似文献   

17.
A new method for the detection of PNA/DNA hybrids is presented. In this method, short PNA probes (9-13 mer) are labeled with a fluorescent dye and allowed to hybridize to target DNA molecules. A cationic polyamino acid, such as polylysine, is then added to the reaction mixture, whereupon the DNA molecules bind electrostatically to this polycation. The PNA probes, which are uncharged or may carry only a small charge due to the fluorescent dye, do not bind to polylysine unless hybridized to the negatively charged DNA target. The binding of the labeled PNA/DNA hybrid to the high-molecular-weight polymer leads to a significant change in the rotational correlation time of the fluorophore attached to the PNA. This can be conveniently detected by measuring the fluorescence polarization of the latter. The method is completely homogeneous because no separation of free from bound PNA probe is required. The hybridization and dehybridization reactions can be followed in real time. The method has been applied to the typing of single-nucleotide polymorphisms in PCR products.  相似文献   

18.
A technique for detecting Raphidophycean, a bloom-forming genus of algae, was developed using a specific DNA probe. The design of the probe was based on a sequence polymorphism within the small subunit (SSU) ribosomal RNA gene (rDNA) of this strain by using fluorescence polarization (FP) analysis and the BIAcore 2000 biosensor, which utilized surface plasmon resonance (SPR). The specific sequence in SSU rDNA for Heterosigma carterae was determined by sequence data analysis. One pair of polymerase chain reaction (PCR) probes was designed for use in making the identification. H. carterae SSU rDNA was amplified by PCR. Using a fluoroscein isothiocyanate–labeled or biotin-labeled oligonucleotide probe, the PCR-amplified rDNA was selectively detected as an FP-intensity change via FP analysis or as a resonance-unit change via SPR. Although total time for final detection after sampling was within 3 hours, specific rDNA could be detected within 10 minutes after PCR through these detection methods.  相似文献   

19.
BACKGROUND: Single nucleotide polymorphisms (SNPs) represent the most frequent form of genetic variations. Some of the most sensitive methods for SNP genotyping employ synthetic oligonucleotides, such as the peptide nucleic acid (PNA). We introduce a new method combining allele-specific hybridization, PNA technology, and flow cytometric detection. We tested the design by genotyping a Danish basal cell carcinoma cohort of 80 individuals for an A/C SNP in exon 6 of the XPD gene. METHODS: Genomic DNA was amplified by a two-step polymerase chain reaction (PCR) in the presence of fluorescein-dyed primers and fluorescein-12-dUTP. The allele-specific PNA molecules were covalently coupled to carboxylated microspheres with and without rhodamine. Allele-specific hybridization between PCR products and immobilized PNA was carried out at 60 degrees C followed by flow cytometric detection. RESULTS: We present a fully functional two-bead genotyping system based on PNA capture and flow cytometric detection used for the correct and fast regenotyping of a Danish basal cell carcinoma cohort. CONCLUSIONS: This new assay presents a simple, rapid, and robust method for SNP genotyping for laboratories equipped with a standard flow cytometer. Moreover, this system offers potential for multiplexing and will be operational for middle-scale genotyping.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号