首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Larval control is of paramount importance in the reduction of malaria vector abundance and subsequent disease transmission reduction. Understanding larval habitat succession and its ecology in different land use managements and cropping systems can give an insight for effective larval source management practices. This study investigated larval habitat succession and ecological parameters which influence larval abundance in malaria epidemic prone areas of western Kenya.

Methods and Findings

A total of 51 aquatic habitats positive for anopheline larvae were surveyed and visited once a week for a period of 85 weeks in succession. Habitats were selected and identified. Mosquito larval species, physico-chemical parameters, habitat size, grass cover, crop cycle and distance to nearest house were recorded. Polymerase chain reaction revealed that An. gambiae s.l was the most dominant vector species comprised of An.gambiae s.s (77.60%) and An.arabiensis (18.34%), the remaining 4.06% had no amplification by polymerase chain reaction. Physico-chemical parameters and habitat size significantly influenced abundance of An. gambiae s.s (P = 0.024) and An. arabiensis (P = 0.002) larvae. Further, larval species abundance was influenced by crop cycle (P≤0.001), grass cover (P≤0.001), while distance to nearest houses significantly influenced the abundance of mosquito species larvae (r = 0.920;P≤0.001). The number of predator species influenced mosquito larval abundance in different habitat types. Crop weeding significantly influenced with the abundance of An.gambiae s.l (P≤0.001) when preceded with fertilizer application. Significantly higher anopheline larval abundance was recorded in habitats in pasture compared to farmland (P = 0.002). When habitat stability and habitat types were considered, hoof print were the most productive followed by disused goldmines.

Conclusion

These findings suggest that implementation of effective larval control programme should be targeted with larval habitats succession information when larval habitats are fewer and manageable. Crop cycles and distance from habitats to household should be considered as effective information in planning larval control.  相似文献   

2.
Long‐lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are the cornerstones of malaria vector control. However, the effectiveness of these control tools depends on vector ecology and behaviour, which also largely determine the efficacy of certain Anopheles mosquitoes (Diptera: Culicidae) as vectors. Malaria vectors in sub‐Saharan Africa are primarily species of the Anopheles gambiae complex, which present intraspecific differences in behaviour that affect how they respond to vector control tools. The focus of this study is the change in species composition in the An. gambiae complex after the implementation of LLINs in Dielmo, Senegal. The main findings referred to dramatic decreases in the proportions of Anopheles coluzzii and An. gambiae after the introduction of LLINs, and an increase in the proportion of Anopheles arabiensis. Two years after LLINs were first introduced, An. arabiensis remained the most prevalent species and An. gambiae had begun to rebound. This indicated a need to develop additional vector control tools that can target the full range of malaria vectors.  相似文献   

3.
Competitive interactions among the aquatic stages of the malaria mosquito Anopheles gambiae s.l. (Diptera: Culicidae) may affect the resulting adult densities and, hence, the risk of malaria. We investigated the impact of the presence of a fourth‐instar larva (An. gambiae Giles s.s. or An. arabiensis Patton), the quantity of food, and the available space on the survival and development of freshly hatched larvae of An. gambiae s.s. and An. arabiensis. To analyse the results, two proportional hazard models were constructed. The first estimated the effects of all covariates on mortality rate and the second estimated the effects of the covariates on development rate into the third larval instar (L3). A time‐dependent covariate for density, which changed during the experiment as a result of death or development to L3, was included in both models. In the presence of a fourth‐instar larva (L4), survival of the experimental larvae was significantly reduced, but no difference was detected between the presence of L4 An. gambiae and L4 An. arabiensis. The observation that the majority of dead larvae were not recovered in trays with an L4 present suggested that cannibalism and predation occurred readily. Limitation in space significantly increased mortality of larvae, whereas a limitation of food reduced larval development rate, but did not cause mortality per se. From this, we concluded that both cannibalism and predation were enhanced as a result of more frequent interactions within smaller environments, but did not occur for reasons of food shortage. This study shows that inter‐ and intraspecific interactions among larvae of the An. gambiae complex strongly affect survival and development, and that the quantity of food and the available space are important determinants of the outcome of these interactions. Implications of the results are discussed with respect to the population dynamics of both malaria vectors in the field.  相似文献   

4.
From 2003 to 2007, entomological surveys were conducted in Lobito town (Benguela Province, Angola) to determine which Anopheles species were present and to identify the vectors responsible for malaria transmission in areas where workers of the Sonamet Company live. Two types of surveys were conducted: (1) time and space surveys in the low and upper parts of Lobito during the rainy and dry periods; (2) a two‐year longitudinal study in Sonamet workers' houses provided with long‐lasting insecticide‐treated nets (LLIN), “PermaNet,” along with the neighboring community. Both species, An. coluzzii (M molecular form) and An. gambiae (S molecular form), were collected. Anopheles coluzzii was predominant during the dry season in the low part of Lobito where larvae develop in natural ponds and temporary pools. However, during the rainy season, An. gambiae was found in higher proportions in the upper part of the town where larvae were collected in domestic water tanks built near houses. Anopheles melas and An. listeri were captured in higher numbers during the dry season and in the low part of Lobito where larvae develop in stagnant brackish water pools. The infectivity rates of An. gambiae s.l. varied from 0.90% to 3.41%.  相似文献   

5.
1. Anopheline larvae are surface feeders and allocate most of their time to search for food at the water surface. However, species of the Anopheles gambiae Giles complex may also show bottom feeding. The consequences of this foraging tactic for life history are unknown, yet may be relevant to understand inter‐specific competition patterns. 2. The diving ability and activity of larvae of the main African malaria vectors, An. coluzzii and An. gambiae, at two different water depths (14 and 30 cm) were assessed. We further explored the biological relevance of diving for food harvesting by monitoring key life history traits in two species treatments (single or mixed species) and two food treatments (surface or bottom feeding). 3. Overall, An. coluzzii larvae showed more diving activity than An. gambiae. When feeding at the bottom both species, and especially An. gambiae, showed a delayed emergence and a reduced emergence rate. Moreover, An. gambiae also suffered a reduced wing length. 4. Mixed‐species rearing had a detrimental effect on the life history traits of An. gambiae but not on An. coluzzii, suggesting a competitive advantage for the latter in our experimental conditions. 5. The present results confirm that anopheline larvae are able to forage for food at the bottom of their breeding site and that An. coluzzii shows a superior diving activity than An. gambiae and this at a lower cost. These behavioural differences probably reflect specific adaptations to different aquatic habitats, and may be important in shaping species distributions and the population biology of these important vector mosquitoes.  相似文献   

6.
Anopheles gambiae s.s mosquitoes are important vectors of lymphatic filariasis (LF) and malaria in Ghana. To better understand their ecological aspects and influence on disease transmission, we examined the spatial distribution of the An. gambiae (M and S) molecular forms and associated environmental factors, and determined their relationship with disease prevalence. Published and current data available on the An. gambiae species in Ghana were collected in a database for analysis, and the study sites were georeferenced and mapped. Using the An. gambiae s.s sites, environmental data were derived from climate, vegetation and remote-sensed satellite sources, and disease prevalence data from existing LF and malaria maps in the literature. The data showed that An. gambiae M and S forms were sympatric in most locations. However, the S form predominated in the central region, while the M form predominated in the northern and coastal savanna regions. Bivariate and multiple regression analyses identified temperature as a key factor distinguishing their distributions. An. gambiae M was significantly correlated with LF, and 2.5 to 3 times more prevalent in the high LF zone than low to medium zones. There were no significant associations between high prevalence An. gambiae s.s locations and malaria. The distribution of the An. gambiae M and S forms and the diseases they transmit in Ghana appear to be distinct, driven by different environmental factors. This study provides useful baseline information for disease control, and future work on the An. gambiae s.s in Ghana.  相似文献   

7.

Plasmodium falciparum is transmitted by mosquitoes from the Anopheles gambiae sensu lato (s.l) species complex and is responsible for severe forms of malaria. The composition of the mosquitoes’ microbiota plays a role in P. falciparum transmission, so we studied midgut bacterial communities of An. gambiae s.l from Burkina Faso. DNA was extracted from 17 pools of midgut of mosquitoes from the Anopheles gambiae complex from six localities in three climatic areas, including cotton-growing and cotton-free localities to include potential differences in insecticide selection pressure. The v3–v4 region of the 16S rRNA gene was targeted and sequenced using Illumina Miseq (2?×?250 nt). Diversity analysis was performed using QIIME and R software programs. The major bacterial phylum was Proteobacteria (97.2%) in all samples. The most abundant genera were Enterobacter (32.8%) and Aeromonas (29.8%), followed by Pseudomonas (11.8%), Acinetobacter (5.9%) and Thorsellia (2.2%). No statistical difference in operational taxonomic units (OTUs) was found (Kruskal–Wallis FDR—p?>?0.05) among the different areas, fields or localities. Richness and diversity indexes (observed OTUs, Chao1, Simpson and Shannon indexes) showed significant differences in the cotton-growing fields and in the agroclimatic zones, mainly in the Sudano-Sahelian area. OTUs from seven bacterial species that mediate refractoriness to Plasmodium infection in An. gambiae s.l were detected. The beta diversity analysis did not show any significant difference. Therefore, a same control strategy of using bacterial species refractoriness to Plasmodium to target mosquito midgut bacterial community and affect their fitness in malaria transmission may be valuable tool for future malaria control efforts in Burkina Faso.

  相似文献   

8.
We present results of two intensive mark-release-recapture surveys conducted during the wet and dry seasons of 2008 in the villages of Fourda and Kenieroba, Mali. The former is a small fishing village by the Niger River with a moderate to high densities of Anopheles gambiae Giles s.s. (Diptera: Culicidae) throughout the year, while the latter is a large agricultural community 2 km inland that experiences strong seasonal fluctuation in An. gambiae densities. We estimate the population size of female An. gambiae in Fourda to be in less than 3,000 during the dry season. We found evidence of large population size and migration from Fourda in Kenieroba during the wet season, but very low numbers and no sign of migrants during the dry season. We suggest that malaria vector control measures aimed at adult mosquitoes might be made more efficient in this region and other seasonal riparian habitats by targeting disruption of mosquito populations by the river during the dry season. This would decrease the size of an already small population, and would be likely to delay the explosive growth in vector numbers in the larger inland villages as rainfall increases.  相似文献   

9.
Malaria transmission was monitored in two villages in the Sahel zone of Niger over 4 years. During this period, a nationwide vector control programme was carried out in which insecticide‐treated bednets were distributed free to mothers of children aged <5 years. Anopheles gambiae and Anopheles arabiensis (Diptera: Culicidae) were found to be the major malaria vectors. The dynamics of An. gambiae s.l. did not vary dramatically over the study period although the proportion of female mosquitoes found resting indoors decreased in both villages and, in one village, the parity rate and sporozoite index were significantly reduced after bednet distribution. By contrast with An. gambiae, the dynamics of Anopheles funestus altered greatly after the bednet distribution period, when adult density, endophagous rate and sporozoite rates decreased dramatically. Our observations highlight the importance of quantifying and monitoring the dynamics and infections of malaria vectors during large‐scale vector control interventions.  相似文献   

10.
Abstract. Permethrin-impregnated bednets protect children against malaria in The Gambia, where Anopheles gambiae complex mosquitoes are the main vectors of malaria. However, no effect has been found on mosquito density, parous rates or sporozoite rates in An.gambiae sensu lato populations; only a reduction in the numbers of mosquitoes resting indoors in rooms with treated bednets. A possible explanation for this paradox is that exposure to treated bednets leads to changed vector behaviour such as a shift in biting time, a diversion to biting outdoors instead of indoors, to biting animals instead of humans, or to increased duration of the gonotrophic cycle. To investigate these possibilities, we observed the biting and exiting behaviour of An.gambiae in ten pairs of villages, in half of which the residents used permethrin-treated bednets. The possible influence of treated bednets on the gonotrophic cycle length was evaluated by mark-release-recapture experiment. No significant difference was found between villages with treated and untreated bednets in the indoor/outdoor ratio of human biting, in mean biting times or in human blood indices of An.gambiae females found resting indoors in the mornings. The proportions of unfed, fed or gravid An.gambiae females collected in exit traps, and the number of females exiting showed no significant differences between rooms with treated and untreated bednets. Indications for a gonotrophic cycle length of 2 days were found. No evidence for any change in duration of the gonotrophic cycle in relation to exposure to treated bednets was found, although the number of recaptures was low in the villages with treated bednets. Since equal numbers of infective An.gambiae were found in villages with treated or untreated bednets, and no changes in mosquito behaviour were detected, we cannot account for how children are protected against malaria by treated bednets. One possibility is that mosquitoes divert to bite other hosts, including adults.  相似文献   

11.
Population genetic structures of the two major malaria vectors Anopheles gambiae s.s. and An. arabiensis, differ markedly across Sub-Saharan Africa, which could reflect differences in historical demographies or in contemporary gene flow. Elucidation of the degree and cause of population structure is important for predicting the spread of genetic traits such as insecticide resistance genes or artificially engineered genes. Here the population genetics of An. gambiae s.s. and An. arabiensis in the central, eastern and island regions of Tanzania were compared. Microsatellite markers were screened in 33 collections of female An. gambiae s.l., originating from 22 geographical locations, four of which were sampled in two or three years between 2008 and 2010. An. gambiae were sampled from six sites, An. arabiensis from 14 sites, and both species from two sites, with an additional colonised insectary sample of each species. Frequencies of the knock-down resistance (kdr) alleles 1014S and 1014F were also determined. An. gambiae exhibited relatively high genetic differentiation (average pairwise FST = 0.131), significant even between nearby samples, but without clear geographical patterning. In contrast, An. arabiensis exhibited limited differentiation (average FST = 0.015), but strong isolation-by-distance (Mantel test r = 0.46, p = 0.0008). Most time-series samples of An. arabiensis were homogeneous, suggesting general temporal stability of the genetic structure. An. gambiae populations from Dar es Salaam and Bagamoyo were found to have high frequencies of kdr 1014S (around 70%), with almost 50% homozygote but was at much lower frequency on Unguja Island, with no. An. gambiae population genetic differentiation was consistent with an island model of genetic structuring with highly restricted gene flow, contrary to An. arabiensis which was consistent with a stepping-stone model of extensive, but geographically-restricted gene flow.  相似文献   

12.
Host seeking by the malaria mosquito Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) is mainly guided by volatile chemicals present in human odours. The skin microbiota plays an important role in the production of these volatiles, and skin bacteria grown on agar plates attract An. gambiae s.s. in the laboratory. In this study, the attractiveness of volatiles produced by human skin bacteria to An. gambiae s.s. was tested in laboratory, semi‐field, and field experiments to assess these effects in increasing environmental complexity. A synthetic blend of 10 compounds identified in the headspace of skin bacteria was also tested for its attractiveness. Carbon dioxide significantly increased mosquito catches of traps baited with microbial volatiles in the semi‐field experiments and was therefore added to the field traps. Traps baited with skin bacteria caught significantly more An. gambiae s.s. than control traps, both in the laboratory and semi‐field experiments. Traps baited with the synthetic blend caught more mosquitoes than control traps in the laboratory experiments, but not in the semi‐field experiments. Although bacterial volatiles increased mosquito catches in the field study, trapping several mosquito vector species, these effects were not significant for An. gambiae s.l. It is concluded that volatiles from skin bacteria affect mosquito behaviour under laboratory and semi‐field conditions and, after fine tuning, have the potential to be developed as odour baits for mosquitoes.  相似文献   

13.
Malaria remains a public health problem in Ghana, with Anopheles gambiae and Anopheles funestus as the predominant vectors. While much information exists on the species composition of An. gambiae, very little exists for An. funestus. This study was carried out to determine the species composition of An. funestus Giles populations from three ecological areas in Ghana and investigate their role in malaria transmission. Mosquitoes were collected using human landing and pyrethrum spray methods. A total of 10,254 Anopheles individuals were collected, out of which An. funestus constituted 53.6% (5,496). An. funestus sensu stricto (s.s.) and Anopheles lessoni were identified as the only members of the An. funestus group in all three ecological areas. All 62 sporozoite positive specimens that were identified as An. funestus s.s. were highly anthropophilic with a human blood index in the range of 80–96%, whereas more than 83% of the An. leesoni had fed on either bovine, goat, or sheep. Malaria transmission was higher in the Sahel savannah area than the rest of the ecological zones, with An. funestus s.s. being implicated as a vector of malaria in all ecological zones. Anopheles leesoni occurred in all the ecological areas but played no role in malaria transmission. The study established the importance of An. funestus s.s. in malaria transmission in Ghana.  相似文献   

14.
Water temperature is an important determinant in many aquatic biological processes, including the growth and development of malaria mosquito (Anopheles arabiensis and A. gambiae) immatures. Water turbidity affects water temperature, as suspended particles in a water column absorb and scatter sunlight and hence determine the extinction of solar radiation. To get a better understanding of the relationship between water turbidity and water temperature, a series of semi-natural larval habitats (diameter 0.32 m, water depth 0.16 m) with increasing water turbidity was created. Here we show that at midday (1300 hours) the upper water layer (thickness of 10 mm) of the water pool with the highest turbidity was on average 2.8°C warmer than the same layer of the clearest water pool. Suspended soil particles increase the water temperature and furthermore change the temperature dynamics of small water collections during daytime, exposing malaria mosquito larvae, which live in the top water layer, longer to higher temperatures.  相似文献   

15.
The Anopheles gambiae complex of mosquitoes includes malaria vectors at different stages of speciation, whose study enables a better understanding of how adaptation to divergent environmental conditions leads to evolution of reproductive isolation. We investigated the population genetic structure of closely related sympatric taxa that have recently been proposed as separate species (An. coluzzii and An. gambiae), sampled from diverse habitats along the Gambia river in West Africa. We characterized putatively neutral microsatellite loci as well as chromosomal inversion polymorphisms known to be associated with ecological adaptation. The results revealed strong ecologically associated population subdivisions within both species. Microsatellite loci on chromosome‐3L revealed clear differentiation between coastal and inland populations, which in An. coluzzii is reinforced by a unusual inversion polymorphism pattern, supporting the hypothesis of genetic divergence driven by adaptation to the coastal habitat. A strong reduction of gene flow was observed between An. gambiae populations west and east of an extensively rice‐cultivated region apparently colonized exclusively by An. coluzzii. Notably, this ‘intraspecific’ differentiation is higher than that observed between the two species and involves also the centromeric region of chromosome‐X which has previously been considered a marker of speciation within this complex, possibly suggesting that the two populations may be at an advanced stage of differentiation triggered by human‐made habitat fragmentation. These results confirm ongoing ecological speciation within these most important Afro‐tropical malaria vectors and raise new questions on the possible effect of this process in malaria transmission.  相似文献   

16.

Introduction

High malaria transmission heterogeneity in an urban environment is basically due to the complex distribution of Anopheles larval habitats, sources of vectors. Understanding 1) the meteorological and ecological factors associated with differential larvae spatio-temporal distribution and 2) the vectors dynamic, both may lead to improving malaria control measures with remote sensing and high resolution data as key components. In this study a robust operational methodology for entomological malaria predictive risk maps in urban settings is developed.

Methods

The Tele-epidemiology approach, i.e., 1) intensive ground measurements (Anopheles larval habitats and Human Biting Rate, or HBR), 2) selection of the most appropriate satellite data (for mapping and extracting environmental and meteorological information), and 3) use of statistical models taking into account the spatio-temporal data variability has been applied in Dakar, Senegal.

Results

First step was to detect all water bodies in Dakar. Secondly, environmental and meteorological conditions in the vicinity of water bodies favoring the presence of Anopheles gambiae s.l. larvae were added. Then relationship between the predicted larval production and the field measured HBR was identified, in order to generate An. gambiae s.l. HBR high resolution maps (daily, 10-m pixel in space).

Discussion and Conclusion

A robust operational methodology for dynamic entomological malaria predictive risk maps in an urban setting includes spatio-temporal variability of An. gambiae s.l. larval habitats and An. gambiae s.l. HBR. The resulting risk maps are first examples of high resolution products which can be included in an operational warning and targeting system for the implementation of vector control measures.  相似文献   

17.
An entomological survey was carried out at 15 sites dispersed throughout the three eco-climatic regions of Burkina Faso (West Africa) in order to assess the current distribution and frequency of mutations that confer resistance to insecticides in An. gambiae s.l. populations in the country. Both knockdown (kdr) resistance mutation variants (L1014F and L1014S), that confer resistance to pyrethroid insecticides, were identified concomitant with the ace-1 G119S mutation confirming the presence of multiple resistance mechanisms in the An. gambiae complex in Burkina Faso. Compared to the last survey, the frequency of the L1014F kdr mutation appears to have remained largely stable and relatively high in all species. In contrast, the distribution and frequency of the L1014S mutation has increased significantly in An. gambiae s.l. across much of the country. Furthermore we report, for the first time, the identification of the ace.1 G116S mutation in An. arabiensis populations collected at 8 sites. This mutation, which confers resistance to organophosphate and carbamate insecticides, has been reported previously only in the An. gambiae S and M molecular forms. This finding is significant as organophosphates and carbamates are used in indoor residual sprays (IRS) to control malaria vectors as complementary strategies to the use of pyrethroid impregnated bednets. The occurrence of the three target-site resistance mutations in both An. gambiae molecular forms and now An. arabiensis has significant implications for the control of malaria vector populations in Burkina Faso and for resistance management strategies based on the rotation of insecticides with different modes of action.  相似文献   

18.
We investigated the fitness consequences of specialization in an organism whose host choice has an immense impact on human health: the African malaria vector Anopheles gambiae s.s. We tested whether this mosquito’s specialism on humans can be attributed to the relative fitness benefits of specialist vs. generalist feeding strategies by contrasting their fecundity and survival on human‐only and mixed host diets consisting of blood meals from humans and animals. When given only one blood meal, An. gambiae s.s. survived significantly longer on human and bovine blood, than on canine or avian blood. However, when blood fed repeatedly, there was no evidence that the fitness of An. gambiae s.s. fed a human‐only diet was greater than those fed generalist diets. This suggests that the adoption of generalist host feeding strategies in An. gambiae s.s. is not constrained by intraspecific variation in the resource quality of blood from other available host species.  相似文献   

19.
Increased human population in the Western Kenya highlands has led to reclamation of natural swamps resulting in the creation of habitats suitable for the breeding of Anopheles gambiae, the major malaria vector in the region. Here we report on a study to restore the reclaimed swamp and reverse its suitability as a habitat for malaria vectors. Napier grass-shaded and non-shaded water channels in reclaimed sites in Western Kenya highlands were studied for the presence and density of mosquito larvae, mosquito species composition, and daily variation in water temperature. Shading was associated with 75.5% and 88.4% (P < 0.0001) reduction in anopheline larvae densities and 78.1% and 88% (P < 0.0001) reduction in Anopheles gambiae sensu lato (s.l.) densities in two sites, respectively. Shading was associated with a 5.7°C, 5.0°C, and 4.7°C, and 1.6°C, 3.9°C, and 2.8°C (for maximum, minimum, and average temperatures, respectively) reduction (P < 0.0001) in water temperatures in the two locations, respectively. An. gambiae s.l. was the dominant species, constituting 83.2% and 73.1%, and 44.5% and 42.3%, of anophelines in non-shaded and shaded channels, respectively, in the two sites, respectively. An. gambiae sensu stricto (s.s.) constituted the majority (97.4%) of An. gambiae s.l., while the rest (2.6%) comprised of Anopheles arabiensis. Minimum water temperature decreased with increasing grass height (P = 0.0039 and P = 0.0415 for Lunyerere and Emutete sites, respectively). The results demonstrate how simple environmental strategies can have a strong impact on vector densities.  相似文献   

20.
Abstract For malaria control, the utility of transgenic vector Anopheles mosquitoes (Diptera: Culicidae) refractory to Plasmodium transmission, will depend on their interbreeding with the wild vector population. In many species, larger males are more successful in obtaining mates. In São Tomé island, we determined that size did not affect mating success of male Anopheles gambiae Giles sensu stricto, the main malaria vector in tropical Africa. Also we showed that larval intraspecific competition is probably insignificant in this population of An. gambiae. Thus, the potential success of transgenic An. gambiae is unlikely to be affected by size selection under field conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号