首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to evaluate the biogeographical hypothesis that the Norwegian lemming (Lemmus lemmus) survived the last glacial period in some Scandinavian refugia, we examined variation in the nucleotide sequence of the mitochondrial control region (402 base pairs (bp)) and the cytochrome b (cyt b) region (633 bp) in Norwegian and Siberian (Lemmus sibiricus) lemmings. The phylogenetic distinction and cyt b divergence estimate of 1.8% between the Norwegian and Siberian lemmings suggest that their separation pre-dated the last glaciation and imply that the Norwegian lemming is probably a relic of the Pleistocene populations from Western Europe. The star-like control region phylogeny and low mitochondrial DNA diversity in the Norwegian lemming indicate a reduction in its historical effective size followed by population expansion. The average estimate of post-bottleneck time (19-21 kyr) is close to the last glacial maximum (18-22 kyr BP). Taking these findings and the fossil records into consideration, it seems likely that, after colonization of Scandinavia in the Late Pleistocene, the Norwegian lemming suffered a reduction in its population effective size and survived the last glacial maximum in some local Scandinavian refugia, as suggested by early biogeographical work.  相似文献   

2.
Quaternary glaciations have played a major role in shaping the genetic diversity and distribution of plant species. Strong palaeoecological and genetic evidence supports a postglacial recolonization of most plant species to northern Europe from southern, eastern and even western glacial refugia. Although highly controversial, the existence of small in situ glacial refugia in northern Europe has recently gained molecular support. We used genomic analyses to examine the phylogeography of a species that is critical in this debate. Carex scirpoidea Michx subsp. scirpoidea is a dioecious, amphi‐Atlantic arctic–alpine sedge that is widely distributed in North America, but absent from most of Eurasia, apart from three extremely disjunct populations in Norway, all well within the limits of the Weichselian ice sheet. Range‐wide population sampling and variation at 5,307 single nucleotide polymorphisms show that the three Norwegian populations comprise unique evolutionary lineages divergent from Greenland with high between‐population divergence. The Norwegian populations have low within‐population genetic diversity consistent with having experienced genetic bottlenecks in glacial refugia, and host private alleles that probably accumulated in long‐term isolated populations. Demographic analyses support a single, pre‐Weichselian colonization into Norway from East Greenland, and subsequent divergence of the three populations in separate refugia. Other refugial areas are identified in North‐east Greenland, Minnesota/Michigan, Colorado and Alaska. Admixed populations in British Columbia and West Greenland indicate postglacial contact. Taken together, evidence from this study strongly indicates in situ glacial survival in Scandinavia.  相似文献   

3.
Climate changes can have fundamental impacts on the distributional patterns of montane species, and range shifts frequently lead to allopatric divergence followed by the establishment of secondary contact zones. Many European and North American organisms have retreated to southern refugia during glacial periods and colonized northward during postglacial periods, but little is known about the evolutionary response of cold‐adapted insects to Pleistocene climate changes in eastern Asia. The scorpionfly Dicerapanorpa magna (Chou), with cold temperate habitat preference and weak dispersal ability, provides a good model system to explore how climate changes have influenced the distribution and divergence of cold‐adapted insects in eastern Asia. This study reconstructed the demographic dynamics and evolutionary history of D. magna with phylogeographic approaches, and predicted the species’ suitable areas under the Last Glacial Maximum (LGM) and current scenarios with the ecological niche modelling analysis. The mitochondrial cytochrome c oxidase subunit I resolved three phylogenetic lineages in D. magna dating back to Pleistocene, corresponding well with the geographically isolated Qinling, Bashan and Minshan Mountains. The ecological niche modelling recovered the suitable habitats for D. magna were the Qinling and Bashan Mountains under LGM and current conditions. The three lineages of D. magna might be in a process of incipient speciation, and likely derived their current distribution from separate glacial origins, followed by vicariance and divergence.  相似文献   

4.
The Pleistocene was an epoch of extreme climatic and environmental changes. How individual species responded to the repeated cycles of warm and cold stages is a major topic of debate. For the European fauna and flora, an expansion–contraction model has been suggested, whereby temperate species were restricted to southern refugia during glacial times and expanded northwards during interglacials, including the present interglacial (Holocene). Here, we test this model on the red deer (Cervus elaphus) a large and highly mobile herbivore, using both modern and ancient mitochondrial DNA from the entire European range of the species over the last c. 40 000 years. Our results indicate that this species was sensitive to the effects of climate change. Prior to the Last Glacial Maximum (LGM) haplogroups restricted today to South‐East Europe and Western Asia reached as far west as the UK. During the LGM, red deer was mainly restricted to southern refugia, in Iberia, the Balkans and possibly in Italy and South‐Western Asia. At the end of the LGM, red deer expanded from the Iberian refugium, to Central and Northern Europe, including the UK, Belgium, Scandinavia, Germany, Poland and Belarus. Ancient DNA data cannot rule out refugial survival of red deer in North‐West Europe through the LGM. Had such deer survived, though, they were replaced by deer migrating from Iberia at the end of the glacial. The Balkans served as a separate LGM refugium and were probably connected to Western Asia with genetic exchange between the two areas.  相似文献   

5.
Life‐history traits, especially the mode and duration of larval development, are expected to strongly influence the population connectivity and phylogeography of marine species. Comparative analysis of sympatric, closely related species with differing life histories provides the opportunity to specifically investigate these mechanisms of evolution but have been equivocal in this regard. Here, we sample two sympatric sea stars across the same geographic range in temperate waters of Australia. Using a combination of mitochondrial DNA sequences, nuclear DNA sequences, and microsatellite genotypes, we show that the benthic‐developing sea star, Parvulastra exigua, has lower levels of within‐ and among‐population genetic diversity, more inferred genetic clusters, and higher levels of hierarchical and pairwise population structure than Meridiastra calcar, a species with planktonic development. While both species have populations that have diverged since the middle of the second glacial period of the Pleistocene, most P. exigua populations have origins after the last glacial maxima (LGM), whereas most M. calcar populations diverged long before the LGM. Our results indicate that phylogenetic patterns of these two species are consistent with predicted dispersal abilities; the benthic‐developing P. exigua shows a pattern of extirpation during the LGM with subsequent recolonization, whereas the planktonic‐developing M. calcar shows a pattern of persistence and isolation during the LGM with subsequent post‐Pleistocene introgression.  相似文献   

6.
Eurasia is a large continent characterized by heterogeneous environments. Glacial cycles during the late Pleistocene have had variable impacts on the avifauna across Eurasia. Bird populations from South‐East Asia show stability through the Last Glacial Maximum (LGM), while populations from Europe exhibit evidence of post‐LGM expansion. We investigated the phylogeography of the Long‐tailed Tit (Aegithalos caudatus), which spans the longitudinal breadth of Eurasia to test how climatic history and regional topographical complexity affected populations and diversification within the species complex. Our results show that two lineages from central and southern China (lineages C and D) segregate geographically, while lineages across northern Eurasia (lineage A and B) show substantial sympatry. Bayesian estimates for the timing of diversification suggest that the four lineages diverged during the middle Pleistocene, splitting in parallel and undergoing concurrent demographic histories since divergence. A. caudatus lineages experienced similar and synchronous population size dynamics during glacial cycles before the LGM. We conclude that the difference in geo‐topologic complexity may be an important factor that led to the variation in secondary admixture between northern Eurasian and eastern Asian lineages.  相似文献   

7.
To address the impacts of past climate changes, particularly since the last glacial period, on the history of the distribution and demography of marine species, we investigated the evolutionary and demographic responses of the intertidal batillariid gastropod, Batillaria attramentaria, to these changes, using the snail as a model species in the northwest Pacific. We applied phylogeographic and divergence population genetic approaches to mitochondrial COI sequences from B. attramentaria. To cover much of its distributional range, 197 individuals collected throughout Korea and 507 publically available sequences (mostly from Japan) were used. Finally, a Bayesian skyline plot (BSP) method was applied to reconstruct the demographic history of this species. We found four differentiated geographic groups around Korea, confirming the presence of two distinct, geographically subdivided haplogroups on the Japanese coastlines along the bifurcated routes of the warm Tsushima and Kuroshio Currents. These two haplogroups were estimated to have begun to split approximately 400,000 years ago. Population divergence analysis supported the hypothesis that the Yellow Sea was populated by a northward range expansion of a small fraction of founders that split from a southern ancestral population since the last glacial maximum (LGM: 26,000–19,000 years ago), when the southern area became re‐submerged. BSP analyses on six geographically and genetically defined groups in Korea and Japan consistently demonstrated that each group has exponentially increased approximately since the LGM. This study resolved the phylogeography of B. attramentaria as a series of events connected over space and time; while paleoceanographic conditions determining the connectivity of neighboring seas in East Asia are responsible for the vicariance of this species, the postglacial sea‐level rise and warming temperatures have played a crucial role in rapid range shifts and broad demographic expansions of its populations.  相似文献   

8.
The relationship between population structure and demographic history is critical to understanding microevolution and for predicting the resilience of species to environmental change. Using mitochondrial DNA from extant colonies and radiocarbon‐dated subfossils, we present the first microevolutionary analysis of emperor penguins (Aptenodytes forsteri) and show their population trends throughout the last glacial maximum (LGM, 19.5–16 kya) and during the subsequent period of warming and sea ice retreat. We found evidence for three mitochondrial clades within emperor penguins, suggesting that they were isolated within three glacial refugia during the LGM. One of these clades has remained largely isolated within the Ross Sea, while the two other clades have intermixed around the coast of Antarctica from Adélie Land to the Weddell Sea. The differentiation of the Ross Sea population has been preserved despite rapid population growth and opportunities for migration. Low effective population sizes during the LGM, followed by a rapid expansion around the beginning of the Holocene, suggest that an optimum set of sea ice conditions exist for emperor penguins, corresponding to available foraging area.  相似文献   

9.
The current phylogeographic pattern of European brown bears (Ursus arctos) has commonly been explained by postglacial recolonization out of geographically distinct refugia in southern Europe, a pattern well in accordance with the expansion/contraction model. Studies of ancient DNA from brown bear remains have questioned this pattern, but have failed to explain the glacial distribution of mitochondrial brown bear clades and their subsequent expansion across the European continent. We here present 136 new mitochondrial sequences generated from 346 remains from Europe, ranging in age between the Late Pleistocene and historical times. The genetic data show a high Late Pleistocene diversity across the continent and challenge the strict confinement of bears to traditional southern refugia during the last glacial maximum (LGM). The mitochondrial data further suggest a genetic turnover just before this time, as well as a steep demographic decline starting in the mid‐Holocene. Levels of stable nitrogen isotopes from the remains confirm a previously proposed shift toward increasing herbivory around the LGM in Europe. Overall, these results suggest that in addition to climate, anthropogenic impact and inter‐specific competition may have had more important effects on the brown bear's ecology, demography, and genetic structure than previously thought.  相似文献   

10.
This study investigated the Pleistocene history of a semi‐aquatic bug, Microvelia douglasi douglasi Scott, 1874 (Hemiptera: Veliidae) in East Asia. We used M. douglasi douglasi as a model species to explore the effects of historical climatic fluctuations on montane semi‐aquatic invertebrate species. Two hypotheses were developed using ecological niche models (ENMs). First, we hypothesized that M. douglasi douglasi persisted in suitable habitats in southern Guizhou, southern Yunnan, Hainan, Taiwan and southeast China during the LIG. After that, the populations expanded (Hypothesis 1). As the spatial prediction in the LGM was significantly larger than in the LIG, we then hypothesized that the population expanded during the LIG to LGM transition (Hypothesis 2). We tested these hypotheses using mitochondrial data (COI+COII) and nuclear data (ITS1 + 5.8S+ITS2). Young lineages, relatively deep splits, lineage differentiation among mountain ranges in central, south and southwest China and high genetic diversities were observed in these suitable habitats. Evidence of mismatch distributions and neutrality tests indicate that a population expansion occurred in the late Pleistocene. The Bayesian skyline plot (BSP) revealed an unusual population expansion that likely happened during the cooling transition between LIG and LGM. The results of genetic data were mostly consistent with the spatial predictions from ENM, a finding that can profoundly improve phylogeographic research. The ecological requirements of M. douglasi douglasi, together with the geographical heterogeneity and climatic fluctuations of Pleistocene in East Asia, could have shaped this unusual demographic history. Our study contributes to our knowledge of semi‐aquatic bug/invertebrate responses to Pleistocene climatic fluctuations in East Asia.  相似文献   

11.
Madagascar is a biodiversity hotspot with a unique fauna and flora largely endemic at the species level and highly threatened by habitat destruction. The processes underlying population‐level differentiation in Madagascar's biota are poorly understood and have been proposed to be related to Pleistocene climatic cycles, yet the levels of genetic divergence observed are often suggestive of ancient events. We combined molecular markers of different variability to assess the phylogeography of Madagascar's emblematic tomato frogs (Dyscophus guineti and D. antongilii) and interpret the observed pattern as resulting from ancient and recent processes. Our results suggest that the initial divergence between these taxa is probably old as reflected by protein‐coding nuclear genes and by a strong mitochondrial differentiation of the southernmost population. Dramatic changes in their demography appear to have been triggered by the end of the last glacial period and possibly by the short return of glacial conditions known as the 8K event. This dramatic change resulted in an approximately 50‐fold reduction of the effective population size in various populations of both species. We hypothesize these species' current mitochondrial DNA diversity distribution reflects a swamping of the mitochondrial genetic diversity of D. guineti by that of D. antongilii previous to the populations' bottlenecks during the Holocene, and probably as a consequence of D. antongilii demographic expansion approximately 1 million years ago. Our data support the continued recognition of D. antongilii and D. guineti as separate species and flag D. guineti as the more vulnerable species to past and probably also future environmental changes.  相似文献   

12.
Phylogeography and ecological niche models (ENMs) suggest that late Quaternary glacial cycles have played a prominent role in shaping present population genetic structure and diversity, but have not applied quantitative methods to dissect the relative contribution of past and present climate vs. other forces. We integrate multilocus phylogeography, climate‐based ENMs and multivariate statistical approaches to infer the effects of late Quaternary climate change on contemporary genetic variation of valley oak (Quercus lobata Née). ENMs indicated that valley oak maintained a stable distribution with local migration from the last interglacial period (~120 ka) to the Last Glacial Maximum (~21 ka, LGM) to the present compared with large‐scale range shifts for an eastern North American white oak (Quercus alba L.). Coast Range and Sierra Nevada foothill populations diverged in the late Pleistocene before the LGM [104 ka (28–1622)] and have occupied somewhat distinct climate niches, according to ENMs and coalescent analyses of divergence time. In accordance with neutral expectations for stable populations, nuclear microsatellite diversity positively correlated with niche stability from the LGM to present. Most strikingly, nuclear and chloroplast microsatellite variation significantly correlated with LGM climate, even after controlling for associations with geographic location and present climate using partial redundancy analyses. Variance partitioning showed that LGM climate uniquely explains a similar proportion of genetic variance as present climate (16% vs. 11–18%), and together, past and present climate explains more than geography (19%). Climate can influence local expansion–contraction dynamics, flowering phenology and thus gene flow, and/or impose selective pressures. These results highlight the lingering effect of past climate on genetic variation in species with stable distributions.  相似文献   

13.
How Quaternary climatic oscillations affected range distributions and intraspecific divergence of alpine plants on the Qinghai‐Tibetan Plateau (QTP) remains largely unknown. Here, we report a survey of chloroplast DNA (cpDNA) and nuclear ribosomal internal transcribed spacer (ITS) DNA variation aimed at exploring the phylogeographical history of the QTP alpine endemic Aconitum gymnandrum. We sequenced three cpDNA fragments (rpl20–rps12 intergenic spacer, the trnV intron and psbA‐trnH spacer) and also the nuclear (ITS) region in 245 individuals from 23 populations sampled throughout the species’ range. Two distinct lineages, with eastern and western geographical distributions respectively, were identified from a phylogenetic analysis of ITS sequence variation. Based on a fast substitution rate, these were estimated to have diverged from each other in the early Pleistocene approximately 1.45 Ma. The analysis of cpDNA variation identified nine chlorotypes that clustered into two major clades that were broadly congruent in geographical distribution with the two ITS lineages. The east–west split of cpDNA divergence was supported by an amova which partitioned approximately half of the total variance between these two groups of populations. Analysis of the spatial distribution of chlorotypes showed that each clade was subdivided into two groups of populations such that a total of four population groups existed in the species. It is suggested that these different groups derive from four independent glacial refugia that existed during the Last Glacial Maximum (LGM), and that three of these refugia were located at high altitude on the QTP platform itself at that time. Coalescent simulation of chlorotype genealogies supported both an early Pleistocene origin of the two main cpDNA clades and also the ‘four‐refugia’ hypothesis during the LGM. Two previous phylogeographical studies of QTP alpine plants indicated that such plants retreated to refugia at the eastern/south‐eastern plateau edge during the LGM and/or previous glacial maxima. However, the results for A. gymnandrum suggest that at least some of these cold‐tolerant species may have also survived centrally on the QTP platform throughout the Quaternary.  相似文献   

14.
Collared lemmings (genus Dicrostonyx) are circumpolar Arctic arvicoline rodents associated with tundra. However, during the last glacial maximum (LGM), Dicrostonyx lived along the southern ice margin of the Laurentide ice sheet in communities comprising both temperate and boreal species. To better understand these communities and the fate of these southern individuals, we compare mitochondrial cytochrome b sequence data from three LGM‐age Dicrostonyx fossils from south of the Laurentide ice sheet to sequences from modern Dicrostonyx sampled from across their present‐day range. We test whether the Dicrostonyx populations from LGM‐age continental USA became extinct at the Pleistocene–Holocene transition ~11000 years ago or, alternatively, if they belong to an extant species whose habitat preferences can be used to infer the palaeoclimate along the glacial margin. Our results indicate that LGM‐age Dicrostonyx from Iowa and South Dakota belong to Dicrostonyx richardsoni, which currently lives in a temperate tundra environment west of Hudson Bay, Canada. This suggests a palaeoclimate south of the Laurentide ice sheet that contains elements similar to the more temperate shrub tundra characteristic of extant D. richardsoni habitat, rather than the very cold, dry tundra of the Northern Arctic. While more data are required to determine whether or not the LGM southern population is ancestral to extant D. richardsoni, it seems most probable that the species survived the LGM in a southern refugium.  相似文献   

15.
Peripatric speciation and the importance of founder effects have long been controversial, and multilocus sequence data and coalescent methods now allow hypotheses of peripatric speciation to be tested in a rigorous manner. Using a multilocus phylogeographical data set for two species of salamanders (genus Hydromantes) from the Sierra Nevada of California, hypotheses of recent divergence by peripatric speciation and older, allopatric divergence were tested. Phylogeographical analysis revealed two divergent lineages within Hydromantes platycephalus, which were estimated to have diverged in the Pliocene. By contrast, a low‐elevation species, Hydromantes brunus, diverged from within the northern lineage of H. platycephalus much more recently (mid‐Pleistocene), during a time of major climatic change in the Sierra Nevada. Multilocus species tree estimation and coalescent estimates of divergence time, migration rate, and growth rate reject a scenario of ancient speciation of H. brunus with subsequent gene flow and introgression from H. platycephalus, instead supporting a more recent divergence with population expansion. Although the small, peripheral distribution of H. brunus suggests the possibility of peripatric speciation, the estimated founding population size of the species was too large to have allowed founder effects to be important in its divergence. These results provide evidence for both recent speciation, most likely tied to the climatic changes of the Pleistocene, and older lineage divergence, possibly due to geological events, and add to evidence that Pleistocene glacial cycles were an important driver of diversification in the Sierra Nevada.  相似文献   

16.
Different scales and frequencies of glaciations developed in Europe and Asia during the Pleistocene. Because species’ responses to climate change are influenced by interactive factors including ecology and local topography, the pattern and tempo of species diversification may vary significantly across regions. The great tit Parus major is a widespread Eurasian passerine with a range that encircles the central Asian desert and high‐altitude areas of the Tibetan Plateau. A number of genetic studies have assessed the effect of paleo‐climate changes on the distribution of the European population. However, none have comprehensively addressed how paleo‐climate change affected the distribution of the great tit in China, an apparent hotspot of P. major subspecific diversity. Here, we describe likely paleo‐climatic effects on P. major populations in China based on a combination of phylogeography and ecological niche models (ENMs). We sequenced three mitochondrial DNA markers from 28 populations (213 individuals), and downloaded 112 sequences from outside its Chinese range. As the first step in clarifying the intra‐specific relationships among haplotypes, we attempted to clarify the divergence and demography of populations in China. Phylogeographic analysis revealed that P. major is comprised of five highly divergent clades with geographic breaks corresponding to steep mountains and dry deserts. A previously undescribed monophyletic clade with high genetic diversity, stable niches and a long and independent evolutionary history was detected in the mountainous areas of southwest China. The estimated times at which these clades diverged was traced back to the Early‐Middle Pleistocene (2.19–0.61 mya). Contrary to the post‐LGM (the Last Glacial Maximum) expansion of European populations, demographic history indicates that Asian populations expanded before the LGM after which they remained relatively stable or grew slowly through the LGM. ENMs support this conclusion and predict a similar distribution in the present and the LGM. Our genetic and ecological results demonstrate that Pleistocene climate changes shaped the divergence and demography of P. major in China.  相似文献   

17.
During Pleistocene glacial‐interglacial cycles, the geographic range is often assumed to have shifted as a species tracks its climatic niche. Alternatively, the geographic range would not necessarily shift if a species can adapt in situ to a changing environment. The potential for a species to persist in place might increase with the diversity of habitat types that a species exploits. We evaluate evidence for either range shift or range stability between the last glacial maximum (LGM) and present time in the chisel‐toothed kangaroo rat (Dipodomys microps), an endemic of the Great Basin and Mojave deserts. We modeled how the species’ range would have changed if the climatic niche of the species remained conserved between the LGM and present time. The climatic models imply that if D. microps inhabited the same climatic niche during the LGM as it does today, the species would have persisted primarily within the warm Mojave Desert and expanded northwards into the cold Great Basin only after the LGM. Contrary to the climatic models, the mitochondrial DNA assessment revealed signals of population persistence within the current distribution of the species throughout at least the latest glacial‐interglacial cycle. We concluded that D. microps did not track its climatic niche during late Pleistocene oscillations, but rather met the challenge of a changing environment by shifting its niche and retaining large portions of its distribution. We speculate that this kind of response to fluctuating climate was possible because of ‘niche drifting’, an alteration of the species’ realized niche due to plasticity in various biological characters. Our study provides an example of an approach to reconstruct species’ responses to past climatic changes that can be used to evaluate whether and to what extent taxa have capacity to shift their niches in response to the changing environment – information becoming increasingly important to predicting biotic responses to future environmental changes.  相似文献   

18.
The southern European peninsulas (Iberian, Italian and Balkan) are traditionally recognized as glacial refugia from where many species colonized central and northern Europe after the Last Glacial Maximum (LGM). However, evidence that some species had more northerly refugia is accumulating from phylogeographic, palaeontological and palynological studies, and more recently from species distribution modelling (SDM), but further studies are needed to test the idea of northern refugia in Europe. Here, we take a rarely implemented multidisciplinary approach to assess if the pygmy shrew Sorex minutus, a widespread Eurasian mammal species, had northern refugia during the LGM, and if these influenced its postglacial geographic distribution. First, we evaluated the phylogeographic and population expansion patterns using mtDNA sequence data from 123 pygmy shrews. Then, we used SDM to predict present and past (LGM) potential distributions using two different training data sets, two different algorithms (Maxent and GARP) and climate reconstructions for the LGM with two different general circulation models. An LGM distribution in the southern peninsulas was predicted by the SDM approaches, in line with the occurrence of lineages of S. minutus in these areas. The phylogeographic analyses also indicated a widespread and strictly northern‐central European lineage, not derived from southern peninsulas, and with a postglacial population expansion signature. This was consistent with the SDM predictions of suitable LGM conditions for S. minutus occurring across central and eastern Europe, from unglaciated parts of the British Isles to much of the eastern European Plain. Hence, S. minutus likely persisted in parts of central and eastern Europe during the LGM, from where it colonized other northern areas during the late‐glacial and postglacial periods. Our results provide new insights into the glacial and postglacial colonization history of the European mammal fauna, notably supporting glacial refugia further north than traditionally recognized.  相似文献   

19.
Our objective was to elucidate the biogeography and speciation patterns in an entire avian family, which shows a complex pattern of overlapping and nonoverlapping geographical distributions, and much variation in plumage, but less in size and structure. We estimated the phylogeny and divergence times for all of the world's species of Prunella based on multiple genetic loci, and analyzed morphometric divergence and biogeographical history. The common ancestor of Prunella was present in the Sino‐Himalayan Mountains or these mountains and Central Asia–Mongolia more than 9 million years ago (mya), but a burst of speciations took place during the mid‐Pliocene to early Pleistocene. The relationships among the six primary lineages resulting from that differentiation are unresolved, probably because of the rapid radiation. A general increase in sympatry with increasing time since divergence is evident. With one exception, species in clades younger than c. 3.7 my are allopatric. Species that are widely sympatric, including the most recently diverged (2.4 mya) sympatric sisters, are generally more divergent in size/structure than allo‐/parapatric close relatives. The distributional pattern and inferred ages suggest divergence in allopatry and substantial waiting time until secondary contact, likely due to competitive exclusion. All sympatrically breeding species are ecologically segregated, as suggested by differences in size/structure and habitat. Colonizations of new areas were facilitated during glacial periods, followed by fragmentation during interglacials—contrary to the usual view that glacial periods resulted mainly in fragmentations.  相似文献   

20.
Pleistocene climate cycles and glaciations had profound impacts on taxon diversification in the Boreal Forest Biome. Using population genetic analyses with multilocus data, we examined diversification, isolation, and hybridization in two sibling species of tree squirrels (Tamiasciurus douglasii and Tamiasciurus hudsonicus) with special attention to the geographically and genetically enigmatic population of T. hudsonicus on Vancouver Island, Canada. The two species differentiated only about 500,000 years ago, in the Late Pleistocene. The island population is phylogenetically nested within T. hudsonicus according to our nuclear analysis but within T. douglasii according to mitochondrial DNA. This conflict is more likely due to historical hybridization than to incomplete lineage sorting, and it appears that bidirectional gene flow occurred between the island population and both species on the mainland. This interpretation of our genetic analyses is consistent with our bioclimatic modeling, which demonstrates that both species were able to occupy this region throughout the Late Pleistocene. The divergence of the island population 40,000 years ago suggests that tree squirrels persisted in a refugium on Vancouver Island at the last glacial maximum, 20,000 years ago. Our observations demonstrate how Pleistocene climate change and habitat shifts have created incipient divergence in the presence of gene flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号