首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Plant species richness influences primary productivity via mechanisms that (1) favour species with particular traits (selection effect) and (2) promote niche differentiation between species (complementarity). Influences of species evenness, plant density and other properties of plant communities on productivity are poorly defined, but may depend on whether selection or complementarity prevails in species mixtures. We predicted that selection effects are insensitive to species evenness but increase with plant density, and that the converse is true for complementarity. To test predictions, we grew three species of annuals in monocultures and in three‐species mixtures in which evenness of established plants was varied at each of three plant densities in a cultivated field in Texas, USA. Above‐ground biomass was smaller in mixtures than expected from monocultures because of negative ‘complementarity’ and a negative selection effect. Neither selection nor complementarity varied with species evenness, but selection effects increased at the greatest plant density as predicted.  相似文献   

2.
Vegetation complexity is characterized by two major traits, i.e., plant chemical and plant structural complexity. Plant species diversity strongly determines these traits. Furthermore, plant structures affect microclimatic conditions, which in turn influence the emission and dispersion of plant volatiles (e.g., chemical complexity). Plant volatile chemical complexity may significantly affect orientation of herbivorous and carnivorous arthropods. Therefore, the way in which plant chemical and plant structural complexity act “in concert” may influence foraging and mating success of arthropods, and thus, finally, community composition. This review emphasizes an integrative view on the relationship between plant species diversity, plant structural complexity, plant volatiles (chemical complexity) and their effects on arthropods. Three new hypotheses are raised, which predict possible relations between plant volatile complexity and plant species diversity: (1) saturation-, (2) step-by-step, (3) incoherence-hypothesis. We conclude that arthropod orientation in natural environments is strongly determined by the relationship between plant volatile diversity and plant species diversity. Furthermore, we emphasize that structural complexity of the vegetation affects plant volatile diversity and thus, arthropod orientation.We review available information on how insects actually respond to complexity during olfactory and visual search and ask for both laboratory and field studies to further unravel the mechanisms of interactions between vegetation traits and their impact on arthropod orientation.  相似文献   

3.
Jaan Liira  Taavi Paal 《Plant Ecology》2013,214(3):455-470
Woody corridors in fragmented landscapes have been proposed as alternative habitats for forest plants, but the great variation in species-specific responses blurs the overall assessment. The aim of this study was to estimate the dispersal success of forest-dwelling plants from a stand into and along an attached woody corridor, and to explain the observed patterns from the point of view of species’ dispersal traits and corridor properties. We sampled 47 forest–corridor transects in the agricultural landscapes of southeastern Estonia. Regionally common forest-dwelling species (observed in at least 10 % of seed-source forests) were classified on the basis of their ecological response profile—forest-restricted species (F-type) and forest-dwelling generalists (G-type). Species richness and the proportion of F-type species decreased sharply from the seed-source forest core to the forest edge and to the first 10–15 m of the corridor, while G-type species richness remained constant throughout the transect. Corridor structure had a species-specific effect—F species were promoted by old (≥50 years) and wide (≥10 m) corridors, while G species were supported by young and narrow corridors with ditch-related soil disturbances. Moderate shade (canopy cover <75 %) was optimal for all forest-dwelling species. Large dispersule weight, and not seed weight, dispersal vector or Ellenberg’s indicator values, was the trait that differentiated F species from G species. We conclude that most woody corridors are only dispersal stepping-stone habitats for habitat generalist species, and not for specialists. Only century old corridors can relieve the dispersal limitation of forest-restricted species.  相似文献   

4.
Explanations of the pattern of species have traditionally relied on small-scale, local processes occurring in ecological time. Differences in species richness have associated with different mechanisms avoiding competition, such as spatiotemporal heterogeneity (weaker competitors may find a more favourable place or time) or environmental stress (competition is assumed to be less intensive under difficult conditions). More recently, large-scale process have been taken into account, raising such questions as: which plant species may potentially grow in a certain community? Are evolutionary processes and species dispersal responsible for the differences between communities? The species-pool theory attempts to answer these general questions, and information about species pools is needed for the design of experiments where the number of species in a community is manipulated.  相似文献   

5.
Invasive plant species impact both ecosystems and economies worldwide, often by displacing native biota. Many plant species exude/emit compounds into the surrounding environment with minor consequences in their native habitat due to a long coevolutionary history. However, upon introduction to ecosystems naïve to these compounds, unpredictable interactions can manifest. The majority of the putative allelochemicals studied have been root exudates, despite the large number of plant species that emit volatile organic compounds. We quantified the concentrations and ecological consequences of volatile monoterpenes from the North American invasive perennial Artemisia vulgaris. Ambient monoterpene-mixing ratios inside an A. vulgaris canopy were 0.02–4.15 ppbv in May and 0.01–0.05 ppbv in August, but were negligible (below instrument detection limit of 0.01 ppbv) 10 m away. Foliar disturbance increased total monoterpene concentration to a maximum of 27 ppbv. However, this level remains 1,000-fold lower than that shown to be phytotoxic to sensitive species in laboratory assays. In contrast, soil monoterpene concentrations were >74-fold higher inside [≤35 ± 11 ng g?1 (SDW)] and 19-fold higher at the edge [9 ± 3 ng g?1 (SDW)], compared to outside the A. vulgaris stand [0.48 ± 0.05 ng g?1 (SDW)]. A common native competitor species, Solidago canadensis, grown in pots and resident soil in situ yielded up to 50% less aboveground biomass inside as compared to outside the A. vulgaris stand. Activated carbon had no effect on greenhouse-grown S. canadensis performance when grown with A. vulgaris, suggesting root-derived exudates are not responsible for field observations. Results from this study suggest that A. vulgaris-derived monoterpenes have little direct activity in their volatile gaseous state, but are concentrated in the soil matrix within and bordering the A. vulgaris stand, thereby reducing interspecific performance and potentially fostering the subsequent local invasion of this species.  相似文献   

6.
The paper provides the first estimate of the role of abiotic and anthropogenic variables driving both alien plant species richness and composition covering the whole region of the European Alps. To establish and spread in a new area, alien plants must be able to tolerate the prevailing climatic conditions. We therefore tested the hypothesis that climatic requirements modified by bioclimatic origin and elevational distribution influence the distribution of alien plants in the Alps. Despite most alien plant species showing a relatively restricted distribution in the Alps, some regions, however, were already more strongly invaded. Most of these species were adapted to warmer conditions, probably constrained by climatic factors. Environmental heterogeneity was the most important predictor of alien plant species richness, followed by anthropogenic disturbance. Due to the political/artificial delineation of the administrative districts in the Alps (i.e., ignoring ecological conditions) we did not find a direct influence of climatic constraints on alien distribution. Anyway, northern Holarctic alien species showed a broader climatic tolerance and the capability to grow across a wide environmental range. Our results also reveal a strong influence of human pressure on warmer tropical species, despite their low adaptability to anthropogenic habitats. To this aim, managers would profit from early warnings to prevent future invasions. Considering bioclimatic origin, our study can aid in identifying potentially invasive species in a more regional setting.  相似文献   

7.
This study aimed to (i) investigate the congruence among the species composition and diversity of bryophytes and vascular plants in forests; (ii) test if site prioritization for conservation aims by the maximization of the pooled number of vascular plant species is effective to maximize the pooled number of bryophyte species. The study was performed in six forests in Tuscany, Italy. Four-hundred and twenty vascular plant species (61 of which were woody) and 128 bryophyte species were recorded in 109 plots. Despite the good predictive value of the compositional patterns of both woody plants and total vascular with respect to the compositional pattern of bryophytes, the species richness of the latter was only marginally related to the species richness of the former two. Bryophyte rare species were not spatially related to rare plant species and neither coincided with the sites of highest plant species richness. The species accumulation curves of bryophytes behaved differently with respect to those of woody plants or total vascular plants. Reserve selection analysis based on the maximization of the pooled species richness of either woody plants or total vascular plants were not effective in maximizing the pooled species richness of bryophytes. This study indicates that species diversity of vascular plants is not likely to be a good indicator of the bryophyte species diversity in Mediterranean forests.  相似文献   

8.
The recent decline in pollinator biodiversity, notably in the case of wild bee populations, puts both wild and agricultural ecosystems at risk of ecological community collapse. This has triggered calls for further study of these mutualistic communities in order to more effectively inform restoration of disturbed plant–pollinator communities. Here, we use a dynamic network model to test a variety of translocation strategies for restoring a community after it experiences the loss of some of its species. We consider the reintroduction of extirpated species, both immediately after the original loss and after the community has reequilibrated, as well as the introduction of other native species that were originally absent from the community. We find that reintroducing multiple highly interacting generalist species best restores species richness for lightly disturbed communities. However, for communities that experience significant losses in biodiversity, introducing generalist species that are not originally present in the community may most effectively restore species richness, although in these cases the resultant community often shares few species with the original community. We also demonstrate that the translocation of a single species has a minimal impact on both species richness and the frequency of community collapse. These results have important implications for restoration practices in the face of varying degrees of community perturbations, the refinement of which is crucial for community management.  相似文献   

9.
Enviro–climatic changes are thought to be causing alterations in ecosystem processes through shifts in plant and microbial communities; however, how links between plant and microbial communities change with enviro–climatic change is likely to be less straightforward but may be fundamental for many ecological processes. To address this, we assessed the composition of the plant community and the prokaryotic community – using amplicon-based sequencing – of three European peatlands that were distinct in enviro–climatic conditions. Bipartite networks were used to construct site-specific plant–prokaryote co-occurrence networks. Our data show that between sites, plant and prokaryotic communities differ and that turnover in interactions between the communities was complex. Essentially, turnover in plant–microbial interactions is much faster than turnover in the respective communities. Our findings suggest that network rewiring does largely result from novel or different interactions between species common to all realised networks. Hence, turnover in network composition is largely driven by the establishment of new interactions between a core community of plants and microorganisms that are shared among all sites. Taken together our results indicate that plant–microbe associations are context dependent, and that changes in enviro–climatic conditions will likely lead to network rewiring. Integrating turnover in plant–microbe interactions into studies that assess the impact of enviro–climatic change on peatland ecosystems is essential to understand ecosystem dynamics and must be combined with studies on the impact of these changes on ecosystem processes.  相似文献   

10.
When can two plant species facilitate each other's pollination?   总被引:14,自引:1,他引:13  
Facilitation occurs when an increase in the density of one species causes an increase in the population growth rate or the density of a second species. In plants, ample evidence demonstrates that one species can facilitate another by ameliorating abiotic conditions, but the hypothesis that pollination facilitation – in which the presence of one flowering species increases pollinator visits to a second species – can also occur remains controversial. To identify the necessary conditions for pollination facilitation to occur, we constructed population models of two plant species that share the same pollinator and compete for establishment sites, and we assumed that heterospecific pollen can interfere with successful seed set. We found that facilitation for pollination occurs only when the pollinator visitation rate is an initially accelerating function of the combined numbers of flowering plants of both species in a patch. The presence of a second species can allow populations of a focal species either to persist for a longer amount of time before going extinct ("weak facilitation") or to persist indefinitely at a stable equilibrium density ("strong facilitation"). When only a single plant of either species can occupy a site, the plant species with the higher initial density can experience strong facilitation but will eventually out-compete the other species. However, when site occupancy was not exclusive, strong facilitation sometimes led to coexistence of the two species. Increasing the extent of pollen carryover increased the range of initial population densities leading to strong facilitation. In light of our theoretical results, we discuss the apparent rarity of pollination facilitation in nature.  相似文献   

11.
12.
Variation among plant species in the number of associated herbivore and pathogen species is predicted to fit a species-area relationship in which the area or biomass embodied by a plant species is a function of individual size and geographic range size. This hypothesis is tested using published estimates of geographic range, individual size, and species richness of fungal pathogens for 490 plant species occurring in the United States and controlling for sampling intensity and phylogenetic effects. The number of pathogens found on a plant species increases with the metrics of area and/or habitat diversity of plant species, and their effects are similar between gymnosperm and angiosperm lineages. The strength of this pattern across a diverse set of plant lineages suggests that accumulation and persistence of pathogen species on plant species are governed by similar processes among temperate plants.  相似文献   

13.
Aims: Darwin's naturalization conundrum describes the paradox that the relationship of exotic species to native residents could either promote or hinder invasion success through opposing mechanisms: niche pre-adaptation or competitive interactions. Previous Darwin's naturalization studies have showed invasion success could vary at stages, sites, and spatial and phylogenetic scales. Our objective was to assess the effects of exotic-native species relationship on invasion process of exotic plant species in China, where related research is still lacking. Methods: Generalized linear mixed models were used to examine relationship between exotic-native species relationship and performance of exotic species at different spatial scale (provincial, municipal and community) and invasion stages (naturalization, dispersal and invasion). At community scale, we measured environmental factors of communities we investigated to control the effect of habitat heterogeneity among them. Important findings: At the provincial and municipal scales, exotic species closely related to native flora were more likely to be naturalized and distributed, which is more consistent with the expectation of the pre-adaptation hypothesis. On the community scale, the exotic-native species relationship was not related to establishment and abundance of exotic species in the community. The results suggested that exotic species did not strongly compete with their close native relatives in communities, but were better adapted to areas where their close relatives had lived. Considering their high potential of naturalization and invasion, special attention should be paid to those exotic species that closely related to the native flora in the management of invasive species. © Editorial Office of Chinese Journal of Plant Ecology. All rights reserved.  相似文献   

14.
Plant community ecologists use the null model approach to infer assembly processes from observed patterns of species co‐occurrence. In about a third of published studies, the null hypothesis of random assembly cannot be rejected. When this occurs, plant ecologists interpret that the observed random pattern is not environmentally constrained – but probably generated by stochastic processes. The null model approach (using the C‐score and the discrepancy index) was used to test for random assembly under two simulation algorithms. Logistic regression, distance‐based redundancy analysis, and constrained ordination were used to test for environmental determinism (species segregation along environmental gradients or turnover and species aggregation). This article introduces an environmentally determined community of alpine hydrophytes that presents itself as randomly assembled. The pathway through which the random pattern arises in this community is suggested to be as follows: Two simultaneous environmental processes, one leading to species aggregation and the other leading to species segregation, concurrently generate the observed pattern, which results to be neither aggregated nor segregated – but random. A simulation study supports this suggestion. Although apparently simple, the null model approach seems to assume that a single ecological factor prevails or that if several factors decisively influence the community, then they all exert their influence in the same direction, generating either aggregation or segregation. As these assumptions are unlikely to hold in most cases and assembly processes cannot be inferred from random patterns, we would like to propose plant ecologists to investigate specifically the ecological processes responsible for observed random patterns, instead of trying to infer processes from patterns.  相似文献   

15.
Abstract. Rare vascular plant species are endangered worldwide. Population losses are most commonly caused by human-related factors. Conservation management seeks to halt this adverse trend and if possible, to enhance long-lasting self-sustainable populations. In general, rare species are poorly recruited from seed banks, or disperse themselves very poorly. It may be a management option to translocate such plants by seeds and/or transplants. This paper asks which problems may be faced. It is argued that translocation is only acceptable if it is based on knowledge of species biology and ecology and the size and structure of its geographic range through time. Such knowledge of rare species is often lacking. The finite management goal can only be achieved if conservationists closely cooperate with both ecologists and geneticists.  相似文献   

16.
Aim We assess the importance of three relevant and readily obtainable life‐history traits (dispersal syndrome, stem height and growth form) and biogeographical origin (European vs. non‐European) on the local and regional abundance of over 400 exotic plant species across eight Mediterranean islands. Location The Mediterranean islands of Lesbos, Rhodes, Crete, Malta, Corsica, Sardinia, Majorca and Minorca. Methods We adopt two abundance criteria for each exotic species: the proportion of islands in which the species occurs (regional abundance), and a qualitative estimate of species abundance within each of five islands (local abundance). Subsequently, we assess the relationship between local and regional abundance, as well as the role of key life‐history traits on both regional and local abundance. These analyses were undertaken separately for the European exotics and the non‐European exotics. Results Only 10.9% of the species occur on more than four islands, and only four species are present on all eight islands. Both local and regional abundances were higher for the non‐European than the European species. Local and regional abundances were positively correlated, particularly for exotics with non‐European origins. Wind‐dispersed species tended to have higher regional abundance than species dispersed by other means but this trend only occurred for local abundance on two islands — Corsica and Majorca. Neither a species’ growth form nor its stem height explained trends in regional or local abundance. Conclusions Although wind‐dispersed exotics are more widespread in the Mediterranean, plant life‐history traits appear to play a lesser role in invasion success than area of biogeographical origin. In general, exotic species of non‐European origin were more abundant at both local and regional scales. Invasion patterns should be interpreted at both local and regional scales, but the stochastic nature of biological invasions may limit deterministic interpretations of invasion patterns, especially if islands are studied in isolation.  相似文献   

17.

To provide fundamental information for the biological control of aphids in vegetable greenhouses, we compared the host ranges of four aphid parasitoid species, Aphidius colemani Viereck, Aphidius gifuensis Ashmead, Diaeretiella rapae (M’Intosh), and Ephedrus nacheri Quilis (Hymenoptera: Braconidae: Aphidiinae). The acceptability as host of 11 vegetable-pest aphids, Acyrthosiphon pisum (Harris), Aphis craccivora Koch, Aphis gossypii Glover, Aulacorthum solani (Kaltenbach), Brevicoryne brassicae (Linnaeus), Chaetosiphon fragaefolii (Cockerell), Lipaphis erysimi (Kaltenbach), Macrosiphoniella sanborni (Gillette), Macrosiphum euphorbiae (Thomas), Myzus persicae (Sulzer), and Uroleucon formosanum (Takahashi), in addition to five aphid species, Melanaphis sacchari (Zehntner), Rhopalosiphum maidis (Fitch), Rhopalosiphum padi (Linnaeus), Schizaphis graminum (Rondani), and Sitobion akebiae (Shinji) (Hemiptera: Aphididae) that serve as alternative hosts in banker–plant systems for the four aphid parasitoid species, were investigated. A newly emerged pair of parasitoid adults were provided to 100 aphids of each species on caged host plants in a 25 °C chamber for 24 h. The numbers of mummified aphids and emerged adults were counted in 10 trials for each aphid species. Aphidius colemani, A. gifuensis, D. rapae and E. nacheri parasitized four, two, three, and eight pest species, respectively, and four, three, three, and five alternative host species, respectively. Ephedrus nacheri had the broadest host range among the four species, and all the four species parasitized M. persicae, R. maidis, and S. graminum. This information will be useful for selecting candidate of biological control agents for aphids and for constructing banker–plant systems.

  相似文献   

18.
19.
Functional traits reflecting the resource economy and growth strategy of plants vary widely both within and among ecosystems. Theory suggests that trait variation within a community may determine the relative abundance of species, though this idea requires more empirical support.We set up a long-term succession experiment in a nutrient-poor wetland, planting seedlings of twelve fenland species in different relative abundances and absolute densities, thereby creating 24 communities. The biomass of these species and the soil water and nutrient status of the system were monitored over ten years. Using these data, we could relate the changing relative abundance of species to five traits – leaf dry matter content (LDMC), leaf nitrogen concentration (LNC), specific leaf area (SLA), relative growth rate (RGR), and seed mass (SM).The initial communities converged after ten years to a common dominance–diversity structure, with two species accounting for 82% of total biomass. Soil water and nutrient conditions remained largely constant. By the end of the experiment, community trait structure had changed so that species functional traits were significantly related to their relative abundance. The most abundant species had high LDMC and SM, but low RGR and SLA, and varied little in LNC, suggesting that investment in leaf structure and retention of nutrients were most important for species dominance under low nutrient conditions. Our results provide experimental evidence that dominance–subdominance structures in plant communities are governed by functional traits.  相似文献   

20.
In recent years, there has been increasing interest in modelling of species abundance data in addition to presence data. In this study, we assessed the similarities and differences between presence‐absence distributions and abundance distributions along similar environmental gradients, derived, respectively, from presence‐absence and abundance data. Moreover, we examined the possibility of using presence‐absence distribution models to derive abundance distributions. For this purpose, we used Braun‐Blanquet abundance scores for 243 vascular species at 10 996 French forest sites. Species distribution models were used to analyse the link between the patterns of occurrence, low abundance and high abundance for each species with regard to mean annual temperature, June water balance, and soil pH. For each species, differences in the modelled distributions were characterised by the ecological optimum and ecological amplitude. A comparison of the presence‐absence and abundance distributions for all species revealed similar optima and different amplitudes along the three ecological factors. An abundant‐centre distribution was observed in environmental space, with species abundance being greatest at the optimal conditions and lower at less favourable conditions of the species occurrence response. Geographical habitat mapping also shows centred, high‐abundance suitability within the presence habitat of each species. We conclude that species distribution models derived from presence‐absence data provide useful information about the ecological optima of abundance distributions but overestimate the range of habitats suitable for high species abundance. This study demonstrates the utility of presence‐absence data for ecologist and conservation biologist when they are interested in the optimal conditions of high species abundance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号