首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Galápagos tortoises represent the only surviving lineage of giant tortoises that exhibit two different types of shell morphology. The taxonomy of Galápagos tortoises was initially based mainly on diagnostic morphological characters of the shell, but has been clarified by molecular studies indicating that most islands harbor monophyletic lineages, with the exception of Isabela and Santa Cruz. On Santa Cruz there is strong genetic differentiation between the two tortoise populations (Cerro Fatal and La Reserva) exhibiting domed shell morphology. Here we integrate nuclear microsatellite and mitochondrial data with statistical analyses of shell shape morphology to evaluate whether the genetic distinction and variability of the two domed tortoise populations is paralleled by differences in shell shape. Based on our results, morphometric analyses support the genetic distinction of the two populations and also reveal that the level of genetic variation is associated with morphological shell shape variation in both populations. The Cerro Fatal population possesses lower levels of morphological and genetic variation compared to the La Reserva population. Because the turtle shell is a complex heritable trait, our results suggest that, for the Cerro Fatal population, non-neutral loci have probably experienced a parallel decrease in variability as that observed for the genetic data.  相似文献   

2.
Unlike birds and mammals, in many reptiles the temperature experienced by a developing embryo determines its gonadal sex. To understand how temperature-dependent sex determination (TSD) evolves, we must first determine the nature of genetic variation for sex ratio. Here, we analyze among-family variation for sex ratio in three TSD species: the American alligator (Alligator mississipiensis), the common snapping turtle (Chelydra serpentina) and the painted turtle (Chrysemys picta). Significant family effects and significant temperature effects were detected in all three species. In addition, family-by-temperature interactions were evident in the alligator and the snapping turtle, but not in the painted turtle. Overall, the among-family variation detected in this study indicates potential for sex-ratio evolution in at least three reptiles with TSD. Consequently, climate change scenarios that are posited on the presumption that sex-ratio evolution in TSD reptiles is genetically constrained may require reevaluation.  相似文献   

3.
Recent interest in testing the river–refugia effect has prompted an evolutionary investigation of the ground skink (Scincella lateralis) to diagnose instances of the riverine barrier hypothesis and thus, Pleistocene climate change refugia. This taxon, characterized by limited vagility, presents itself as a model organism in understanding patterns in Gulf Coast squamate evolution and biogeography. Here, we use geometric morphometric techniques to assess whether changes in head shape characterize diverging molecular lineages. We analysed head shape variation for diagnostic morphology by population and hypothesized that clades recovered as monophyletic by previous molecular studies will be more similar to each other than distantly related lineages. Dorsal and lateral head shape analyses indicated strong divergence for one clade (mitochondrial Clade I) in association with mtDNA divergence, exhibiting cranial narrowing and elongation relative to all other clades, and weak divergence of another clade (mitochondrial Clade N), which exhibited similar shape divergence from consensus. Both of these clades are Gulf Coast lineages and our results suggest convergence in head shape towards a regional phenotype.  相似文献   

4.
A previous mtDNA study indicated that female-mediated gene flow was extremely rare among alligator snapping turtle populations in different drainages of the Gulf of Mexico. In this study, we used variation at seven microsatellite DNA loci to assess the possibility of male-mediated gene flow, we augmented the mtDNA survey with additional sampling of the large Mississippi River System, and we evaluated the hypothesis that the consistently low within-population mtDNA diversity reflects past population bottlenecks. The results show that dispersal between drainages of the Gulf of Mexico is rare (F STmsat  = 0.43, ΦSTmtDNA = 0.98). Past range-wide bottlenecks are indicated by several genetic signals, including low diversity for microsatellites (1.1–3.9 alleles/locus; H e = 0.06–0.53) and mtDNA (h = 0.00 for most drainages; π = 0.000–0.001). Microsatellite data reinforce the conclusion from mtDNA that the Suwannee River population might eventually be recognized as a distinct taxonomic unit. It was the only population showing fixation or near fixation for otherwise rare microsatellite alleles. Six evolutionarily significant units are recommended on the basis of reciprocal mtDNA monophyly and high levels of microsatellite DNA divergence.  相似文献   

5.
Scaphinotus petersi Roeschke, 1907 (Carabidae) is a ground beetle endemic to Sky Islands in south‐eastern Arizona. Previous taxonomic studies described several subspecies with morphological differences inhabiting geographically isolated mountain ranges. We combined molecular sequence data and morphometric data, especially head and pronotum shape analyses, to examine the variation and divergence in subspecies and isolated montane populations. In this study, we employ a combination of distance morphometrics as well as geometric morphometrics to quantify the level of morphological variation, and to test the hypothesis that geographically distinct populations of S. petersi are phenotypically distinct. Results suggest that these isolated populations have diverged morphologically and genetically. Phylogenetic analyses identified two monophyletic lineages within the species that correspond generally to pronotum shape. We observed significant morphological variation among most montane populations in of S. petersi, with the pronotum shape as the clearest delimiting trait. © 2015 The Linnean Society of London  相似文献   

6.
Family level molecular phylogenetic analyses of cichlid fishes have generally suffered from a limited number of characters and/or poor taxonomic sampling across one or more major geographic assemblage, and therefore have not provided a robust test of early intrafamilial diversification. Herein we use both nuclear and mitochondrial nucleotide characters and direct optimization to reconstruct a phylogeny for cichlid fishes. Representatives of major cichlid lineages across all geographic assemblages are included, as well as nearly twice the number of characters as any prior family‐level study. In a strict consensus of 81 equally most‐parsimonious hypotheses, based on the simultaneous analysis of 2222 aligned nucleotide characters from two mitochondrial and two nuclear genes, four major subfamilial lineages are recovered with strong support. Etroplinae, endemic to Madagascar (Paretroplus) and southern Asia (Etroplus), is recovered as the sister taxon to the remainder of Cichlidae. Although the South Asian cichlids are monophyletic, the Malagasy plus South Asian lineages are not. The remaining Malagasy lineage, Ptychochrominae, is monophyletic and is recovered as the sister group to a clade comprising the African and Neotropical cichlids. The African (Pseudocrenilabrinae) and Neotropical (Cichlinae) lineages are each monophyletic in this reconstruction. The use of multiple molecular markers, from both mitochondrial and nuclear genes, results in a phylogeny that in general exhibits strong support, notably for early diversification events within Cichlidae. Results further indicate that Labroidei is not monophyletic, and that the sister group to Cichlidae may comprise a large and diverse assemblage of percomorph lineages. This hypothesis may at least partly explain why morphological studies that have attempted to place Cichlidae within Percomorpha, or that have tested cichlid monophyly using only “labroid” lineages, have met with only limited success. © The Willi Hennig Society 2004.  相似文献   

7.
Of all the superfamilies within the megadiverse order Coleoptera (Insecta), Cucujoidea (Cucujiformia) is arguably the most problematic taxonomically. The families comprising Cucujidae s.l. (Silvanidae, Laemophloeidae, Passandridae and Cucujidae s.s. represent a large portion of cucujoid diversity. Herein we present the results of a rigorous molecular phylogenetic analysis of Cucujidae s.l. using maximum‐likelihood and Bayesian analyses of seven genes. Representatives of over half of the families of Cucujoidea (excluding the cerylonid series), as well as a broad sampling of Silvanidae and Laemophloeidae, were analysed. The monophyly of Cucujidae s.l. is rejected but a subgrouping of taxa that may form the core of a natural cucujoid lineage is recovered. This clade consists of two large monophyletic groups including several families each. Relationships among these smaller cucujoid groups are discussed, including several novel phylogenetic hypotheses, whereas morphological characters considered significant for classification in Cucujidae s.l. are evaluated in light of these phylogenetic hypotheses. Silvaninae, Telephanini, Brontini and Brontinae are recovered as monophyletic in the Bayesian analysis, but the former two are recovered as paraphyletic in the maximum‐likelihood analysis. Our results support the placement of Psammoecus Latreille within Telephanini and also recover a paraphyletic Telephanus Erichson. Silvaninae is divided into three lineages, each representing a potential tribal lineage. Laemophloeidae is rendered paraphyletic in all analyses by Propalticidae and the latter is herein formally transferred to Laemophloeidae stat.n . Several suprageneric laemophloeid clades are recovered and discussed as potential higher‐level groups. Laemophloeus Dejean is not recovered as monophyletic.  相似文献   

8.
We studied the population genetics of Podocnemis unifilis turtles within and among basins in the Orinoco and Amazon drainages using microsatellites. We detected high levels of genetic diversity in all sampled localities. However, ‘M-ratio’ tests revealed a substantial recent population decline in ten localities, in accord with current widespread exploitation. Our results reveal a consistent pattern across multiple analyses, showing a clear subdivision between the populations inhabiting the Amazon and Orinoco drainages despite a direct connection via the Casiquiare corridor, and suggesting the existence of two biogeographically independent and widely divergent lineages. Genetic differentiation followed an isolation-by-distance model concordant with hypotheses about migration. It appears that migration occurs via the flooded forest in some drainages, and via river channels in those where geographic barriers preclude dispersal between basins or even among nearby tributaries of the same basin. These observations caution against making generalizations based on geographically restricted data, and indicate that geographically proximate populations may be demographically separate units requiring independent management.  相似文献   

9.
Aim Geomorphic evolution of river basins can shape the structure and diversity of aquatic communities, but understanding the biological significance of basin evolution can be challenging in semi‐arid regions with ephemeral or endorheic conditions and complex drainage configurations such as the Sierra Madre Occidental (SMO) in North America. In this study, we characterized range‐wide patterns of genetic variation in the Mexican stoneroller (Campostoma ornatum) to infer how orogenic and erosional influences on river basin connectivity have given rise to the diverse and largely endemic freshwater communities across the SMO region. Location Twelve drainage basins across northern Mexico and the south‐western United States, centred on the SMO. Methods  We collected 202 specimens from 98 localities across the range of C. ornatum. We performed phylogenetic analyses of DNA sequences from one mitochondrial (cytochrome b) and one nuclear (intron S7) gene. Phylogenetic trees were estimated for each data set using maximum likelihood and Bayesian inference. Results Phylogenetic analyses consistently resolved a monophyletic C. ornatum composed of multiple evolutionary lineages within two markedly divergent clades that differentiate northern drainages from southern drainages in the SMO region. Within‐clade patterns of divergence corresponded to fine‐scale geographic structure within and among SMO drainage basins. However, the geographic distribution of evolutionary lineages within the northern and southern clades did not always correspond to the geographic configuration of drainage basins. Some subclades encompassed multiple drainages, and individuals from a single drainage were sometimes recovered in multiple subclades. Main conclusions Our findings indicate that a common ancestor of Mexican Campostoma is likely to have entered north‐west Mexico through an ancient Rio Grande system that extended as far south as the Rio Nazas and Rio Aguanaval. The geographic orientation of the two strongly divergent clades recovered within C. ornatum provides evidence of long‐standing isolation of southern basins from northern basins within the ancestral Rio Grande system, possibly due to the combined influence of tectonic events and increasing regional aridity. Geographic patterns of genetic variation also provide evidence of range expansion from Atlantic to Pacific drainages due to drainage evolution and river capture events, as well as further inter‐basin exchange via more recent headwater capture events, hydrological connections and possible anthropogenic introductions.  相似文献   

10.
Abstract. Recent independent phylogenetic analyses of membracid relationships based on molecular and morphological data have identified monophyletic lineages within the family. However, the results of these studies have not fully resolved treehopper phylogeny, and relationships among some higher membracid lineages remain in doubt. Portions of three datasets (958 aligned nucleotides from elongation factor‐1α, 2363 aligned nucleotides from 28S ribosomal DNA, and eighty‐three morphological features of adults and nymphs) introduced in recent studies were reanalysed separately and in combination with two new molecular datasets (321 aligned nucleotides from wingless and 1829 aligned nucleotides from 18S ribosomal DNA). The results of the combined data analyses, contrary to previous analyses of morphological data alone, grouped membracids into two well‐supported lineages, one comprising Stegaspidinae and Centrotinae, the other comprising Membracinae, Darninae and Smiliinae. The analyses recovered Centrotinae, Membracinae and Darninae as monophyletic groups, but Stegaspidinae was paraphyletic with respect to Centrotinae, and Smiliinae was polyphyletic with Micrutalini placed as a sister group to the clade comprising Membracinae, Darninae and Smiliinae. These results are consistent with the following hypotheses, proposed previously based on an analysis of morphological data: (1) the posterior pronotal process was derived and lost multiple times during the evolution of Membracidae; (2) Membracidae originated in the New World and reached the Old World subsequently via dispersal; (3) maternal care evolved independently multiple times and may or may not have been preceded by the acquisition of ant mutualism.  相似文献   

11.
Molecular phylogenetic analyses have had a major impact on the classification of the green algal class Chlorophyceae, corroborating some previous evolutionary hypotheses, but primarily promoting new interpretations of morphological evolution. One set of morphological traits that feature prominently in green algal systematics is the absolute orientation of the flagellar apparatus in motile cells, which correlates strongly with taxonomic classes and orders. The order Sphaeropleales includes diverse green algae sharing the directly opposite (DO) flagellar apparatus orientation of their biflagellate motile cells. However, algae across sphaeroplealean families differ in specific components of the DO flagellar apparatus, and molecular phylogenetic studies often have failed to provide strong support for the monophyly of the order. To test the monophyly of Sphaeropleales and of taxa with the DO flagellar apparatus, we conducted a molecular phylogenetic study of 16 accessions representing all known families and diverse affiliated lineages within the order, with data from four plastid genes (psaA, psaB, psbC, rbcL) and one nuclear ribosomal gene (18S). Although single‐gene analyses varied in topology and support values, analysis of combined data strongly supported a monophyletic Sphaeropleales. Our results also corroborated previous phylogenetic hypotheses that were based on chloroplast genome data from relatively few taxa. Specifically, our data resolved Volvocales, algae possessing predominantly biflagellate motile cells with clockwise (CW) flagellar orientation, as the monophyletic sister lineage to Sphaeropleales, and an alliance of Chaetopeltidales, Chaetophorales, and Oedogoniales, orders having multiflagellate motile cells with distinct flagellar orientations involving the DO and CW forms.  相似文献   

12.
Otocinclus cocama, a uniquely colored species of the loricariid catfish genus Otocinclus described solely from the type locality in the lower Ucayali River in northern Peru, is reported occurring in the Tigre River, a tributary to the Marañón River that drains a different section of the Andean Mountain range in the western Amazon. Both populations differ in the number of dark bars spanning the flanks of the body, and we investigated whether these morphotypes constitute distinct species. The body shapes of populations from the Tigre and Ucayali rivers were compared using geometric morphometrics. Although principal component analysis detected a broad overlap between populations, multivariate analysis of variance and linear driscriminat analysis revealed a subtle differentiation between the populations of the two hydrographic basins. Average body shape of the Ucayali River population tend to be slightly higher than that of the Tigre River, with the caudal peduncle stretched vertically in the Ucayali population. Multivariate regression of shape and centroid size revealed an allometric effect of 10.7% (p < 0.001), suggesting that the variation between Tigre and Ucayali populations was purely shape variation. Molecular data of coI, cytb, nd2, and 16S mitochondrial genes indicated a nucleotide diversity range from 0.001 to 0.003, and haplotypic diversity range from 0.600 ± 0.11 to 0.79 ± 0.07. The median-joining haplotype network for the concatenated matrix exhibited two divergent haplogroups related to the geographic area and separated by <10 mutational steps. The molecular species delimitation methods based on distance (automatic barcode gap discovery and assemble species by automatic partitioning) recovered two molecular lineages evolving independently, being one of the lineages formed by individuals from both populations. Tree-based methods (generalized mixed Yule coalescent and Bayesian implementation of the Poisson tree process) recovered similar topologies and supported single lineage recognition. Methods of molecular delimitation of species disclosed the high similarity between the two populations of Otocinclus cocama, further supported by the presence of old haplotypes common to both groups which could indicate that the populations still maintain gene flow. Although the morphological data reveal a subtle variation between both river basins, the molecular data suggest a weak population structuration based on hydrographic areas, but not different species lineages, therefore Otocinclus cocama is composed of a single lineage with two distinct morphotypes.  相似文献   

13.
We assess variation in morphological and molecular characters among three species of Myosorex (the mouse shrew) –Myosorex geata, Myosorex kihaulei, and Myosorex zinki– as a means to test previously proposed biogeographic hypotheses for Tanzanian ‘sky islands’ and systematic hypotheses for Tanzanian mouse shrews. We analyse 17 cranial and dental variables using multivariate statistics and perform phylogenetic and phylogeographic analyses on sequences of mitochondrial and nuclear DNA; samples are drawn from every known Tanzanian population of Myosorex. Morphometric and phylogenetic analyses reveal that M. zinki is distinct, but that currently isolated populations of M. geata and M. kihaulei are relatively similar to one another, and may not have been isolated over geological time scales. Analyses of molecular variance identify statistically significant, but limited, genetic variation within and between isolated populations of M. geata and M. kihaulei. Between two putative regional biogeographic boundaries, greater genetic variation is explained by grouping populations on either side of the Ruaha River than by grouping populations on either side of the Makambako Gap. Our results are in agreement with recent studies illustrating the close relationship between faunas of the Southern Highlands and southern Eastern Arc Mountains, diminishing the apparent importance of the Makambako Gap as a historical biogeographic barrier. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 669–680.  相似文献   

14.
The dwarf gerbil (Gerbillus nanus) is broadly distributed in Asia, with a range that encompasses altitudinally diverse terrain, including two major mountain ranges. Previous studies have shown this species to be generally varied across its geographic range, both genetically and morphologically. Physical barriers (e.g. mountains) and geographic distance (i.e. isolation by distance [IBD]) are expected to reduce dispersal rates, and consequently could lead to cranial morphological differentiation among populations. Adaptation to local environments is also expected to lead to cranial morphological differentiation among populations. Here, I test these hypotheses by examining variation in cranial shape and size across the geographic distribution of G. nanus using geometric morphometric analysis. Based on a sample of 473 specimens from throughout its distribution, G. nanus populations do not seem to show biologically meaningful variation in cranial shape. Cranial size, on the other hand, did show geographic variation—yet, this variation does not seem to show strong patterns of IBD nor adaptation to local environments, which could indicate that the geographic variation in the cranial size of G. nanus populations may be accounted for by factors unexamined in this study.  相似文献   

15.
Aim The Mediterranean Basin is a centre of radiation for numerous species groups. To increase our understanding of the mechanisms underlying speciation and radiation events in this region, we assessed the phenotypic variability within the Pipistrellus pipistrellus–pygmaeus–hanaki species complex. Although bats form the second largest mammalian order, studies of insular evolution in this group are scarce. We approached this problem from a microevolutionary perspective and tested for the recurrence of the insular syndrome. Location The Mediterranean Basin, with a special focus on isolated populations from Corsica, the Maghreb, Cyprus, Cyrenaica and Crete. Methods Phenotypic variability was assessed by cranial morphometrics using the coordinates of 41 3D landmarks and associated geometric‐morphometric methods. We analysed 125 specimens representing all of the lineages in the species complex. Differences between taxa and between insular and continental populations in cranial size, shape, form and allometries were tested using analyses of variance and visualized using boxplots and canonical variate analysis. Relationships between molecular data from a previous study (cytochrome b sequences) and morphometric data were tested with co‐inertia analyses (RV test) and multivariate regressions. Results The three species were relatively well differentiated in cranial size and shape, and each species showed a significant amount of inter‐population variability. Comparisons of pairs of insular versus continental populations revealed heterogeneities in cranial patterns among island phenotypes, suggesting no recurrent insular syndrome. Molecular and phenotypic traits were correlated, except for molecular and lateral cranium shape. Main conclusions The Pipistrellus pipistrellus pygmaeus hanaki species complex exhibits phenotypic variability as a result of the fragmentation of its distribution (especially on islands), its phylogenetic and phylogeographic history and, most probably, other evolutionary factors that were not investigated in this study. We found no recurrent pattern of evolution on islands, indicating that site‐specific factors play a prevailing role on Mediterranean islands. The correlation between molecular and phenotypic data is incomplete, suggesting that factors other than phylogenetic relationships, potentially connected with feeding ecology, have played a role in shaping cranial morphology in this species complex.  相似文献   

16.
Comparing variation across evolutionarily independent characters, notably nuclear and mitochondrial genes, yields a more robust estimate of diversification than is generally recovered from individual characters. Patterns of variation across multiple molecular markers from the mitochondrial ( 16SrRNA , cytochrome b ) and nuclear ( ldhA6 and aldB ) genomes were examined from six populations of Etheostoma collis and two populations of Etheostoma saludae , species aligned in the collis groups. Phylogenetic analyses revealed that sequence variation among individuals from the Roanoke, Tar and Neuse Rivers and the Catawba and Pee Dee Rivers, respectively, form highly supported, deeply divergent clades. Relationships of alleles sampled from Saluda River E. saludae and Cape Fear River E. collis to these lineages are unresolved, but all groups are reciprocally monophyletic for both nuclear and mtDNA loci. Phylogenetic analyses suggest that historical factors have had a strong influence on the distribution of genetic variation among populations. Genetic variation within the collis group is consistent with all previously proposed taxonomic hypotheses for the collis group, providing no taxonomic insights. From a conservation standpoint, each population of the collis group is an ESU, thereby warranting a drainage-specific management strategy.  相似文献   

17.
Two trinucleotide and seven tetranucleotide microsatellite loci were isolated from an alligator snapping turtle Macrochelys temminckii. To assess the degree of variability in these nine microsatellite loci, we genotyped 174 individuals collected from eight river drainage basins in the southeastern USA. These markers revealed a moderate degree of allelic diversity (six to 16 alleles per locus) and observed heterozygosity (0.166–0.686). These polymorphic microsatellite loci provide powerful tools for population genetic studies for a species that is afforded some level of conservation protection in every state in which it occurs.  相似文献   

18.
In previous molecular phylogenetic analyses of the freshwater mussel family Unionidae (Bivalvia: Unionoida), the Afrotropical genus Coelatura had been recovered in various positions, generally indicating a paraphyletic Unionidae. However that result was typically poorly supported and in conflict with morphology-based analyses. We set out to test the phylogenetic position of Coelatura by sampling tropical lineages omitted from previous studies. Forty-one partial 28S nuclear rDNA and partial COI mtDNA sequences (1130 total aligned nucleotides) were analyzed separately and in combination under both maximum parsimony and likelihood, as well as Bayesian inference. There was significant phylogenetic incongruence between the character sets (partition homogeneity test, p < 0.01), but a novel heuristic for comparing bootstrap values among character sets analyzed separately and in combination illustrated that the observed conflict was due to homoplasy rather than separate gene histories. Phylogenetic analyses robustly supported a monophyletic Unionidae, with Coelatura recovered as part of a well-supported Africa–India clade (= Parreysiinae). The implications of this result are discussed in the context of Afrotropical freshwater mussel evolution and the classification of the family Unionidae.  相似文献   

19.
The cDNAs encoding lactate dehydrogenase isozymes LDH-A (muscle) and LDH-B (heart) from alligator and turtle and LDH-A, LDH-B, and LDH-C (testis) from pigeon were cloned and sequenced. The evolutionary relationships among vertebrate LDH isozymes were analyzed. Contrary to the traditional belief that the turtle lineage branched off before the divergence between the lizard/alligator and bird lineages, the turtle lineage was found to be clustered with either the alligator lineage or the alligator-bird clade, while the lizard lineage was found to have branched off before the divergence between the alligator/turtle and bird lineages. The pigeon testicular LDH-C isozyme was evidently duplicated from LDH-B (heart), so it is not orthologous to the mammalian testicular LDH-C isozymes.   相似文献   

20.
The bony canals permeating the turtle skull associated with the cranial circulation have long been considered integral to an understanding of extinct and extant turtle systematics. Recent phylogenetic analyses, employing a variety of data sets, suggest alternatives to the traditional arrangement of crown turtles. Of particular note is the recent failure of investigations employing molecular techniques to retrieve a monophyletic Trionychoidea, a clade supported largely by shared circulatory features. These alternative phylogenies may also have implications for extinct forms. The turtle cranial arterial circulation therefore represents an ideal system upon which to conduct a detailed, multipronged analysis of a systematically influential character. In the present study, the theoretical underpinnings of character analysis are critically evaluated, and a new interpretation of circulatory variation in turtles is offered, including a revised phylogenetic character suite. This assessment indicates an autapomorphic circulatory pattern in Trionychia, whereas Trionychoidea is not supported.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 239–256.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号