首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Individuals foraging in large groups are thought to benefitbecause they are better able to detect and avoid predators.As a consequence, individuals in groups can adopt more risky,but rewarding, foraging behaviors without exposing themselvesto excessive danger. I experimentally manipulated the size ofblack-tailed prairie dog (Cynomys ludovicianus) groups to determineif individuals in large groups do forage in a more risky manner.I found that prairie dogs foraged more alertly and in less riskylocations (nearer to burrows, nearer to the center of the group,and in shorter vegetation) when group size was reduced. Effectsof group-size reductions were reversed when removed individualswere replaced, and persisted for at least three weeks in experimentswhere group size was permanently reduced. My results provideevidence that the relationships between group size and bothalertness and risk-place foraging are causal.  相似文献   

2.
Prairie dogs have declined by 98% throughout their range in the grasslands of North America. Translocations have been used as a conservation tool to reestablish colonies of this keystone species and to mitigate human–wildlife conflict. Understanding the behavioral responses of prairie dogs to translocation is of utmost importance to enhance the persistence of the species and for species that depend on them, including the critically endangered black-footed ferret. In 2017 and 2018, we translocated 658 black-tailed prairie dogs on the Lower Brule Indian Reservation in central South Dakota, USA, a black-footed ferret recovery site. Here, we describe and evaluate the effectiveness of translocating prairie dogs into augered burrows and soft-released within presumed coteries to reestablish colonies in previously occupied habitat. We released prairie dogs implanted with passive integrated transponders (PIT tags) and conducted recapture events approximately 1-month and 1-year post-release. We hypothesized that these methods would result in a successful translocation and that prairie dogs released as coteries would remain close to where they were released because of their highly social structure. In support of these methods leading to a successful translocation, 69% of marked individuals was captured 1-month post-release, and 39% was captured 1-year post-release. Furthermore, considerable recruitment was observed with 495 unmarked juveniles captured during the 1-year post-release trapping event, and the reestablished colony had more than doubled in the area by 2021. Contrary to our hypothesis, yet to our knowledge a novel finding, there was greater initial movement within the colony 1-month post-release than expected based on recapture locations compared with the published average territory size; however, 1 year after release, most recaptured individuals were captured within the expected territory size when compared to capture locations 1-month post-release. This research demonstrates that while translocating prairie dogs may be socially disruptive initially, it is an important conservation tool.  相似文献   

3.
Translocating prairie dogs from areas in or near human developments to wildlands can reduce conflicts with humans or supplement wild populations, but translocation methods differ in cost and fate of translocated individuals is often difficult to assess. We translocated 74 Gunnison's prairie dogs from 1 source colony in downtown Flagstaff, Arizona (urban) and 75 from 1 source colony in lower density housing outside the city (suburban) to 2 abandoned, recipient colonies on open grasslands 50 km north of the city (wildland). We released animals into uncaged, pre-existing burrow entrances (hard release) or into temporary cages over pre-existing burrow entrances (soft release). We captured 15 (10%) marked animals 1 year post-translocation at the 2 recipient colonies, 7 from soft release treatments and 8 from hard release treatments but visual surveys indicated a minimum of 57 adult prairie dogs and 76 pups present. Adult prairie dogs in all photographs taken by automated cameras placed at burrow entrances at each recipient colony had ear tags, suggesting that most animals at these colonies were survivors from translocation and that survival was likely higher than 10%. By 1 year post-release, recipient colonies occupied an area roughly 9–18 times that of source colonies. Urban Gunnison's prairie dogs can be successfully translocated to abandoned wildland colonies without using soft release methods, but animals may disperse widely. Given the cost and effort translocation requires, and the fact that all 6 confirmed mortalities were from human shooting, we recommend temporary restrictions on shooting at recipient colonies until populations have met management goals. © 2011 The Wildlife Society.  相似文献   

4.
The Utah prairie dog (Cynomys parvidens), listed as threatened under the United States Endangered Species Act, was the subject of an extensive eradication program throughout its range during the 20th century. Eradication campaigns, habitat destruction/fragmentation/conversion, and epizootic outbreaks (e.g., sylvatic plague) have reduced prairie dog numbers from an estimated 95,000 individuals in the 1920s to approximately 14,000 (estimated adult spring count) today. As a result of these anthropogenic actions, the species is now found in small isolated sets of subpopulations. We characterized the levels of genetic diversity and population genetic structure using 10 neutral nuclear microsatellite loci for twelve populations (native and transplanted) representative of the three management designated “recovery units,” found in three distinct biogeographic regions, sampled across the species' range. The results indicate (1) low levels of genetic diversity within colonies (He = 0.109–0.357; Ho = 0.106‐ 0.313), (2) high levels of genetic differentiation among colonies (global FST = 0.296), (3) very small genetic effective population sizes, and (4) evidence of genetic bottlenecks. The genetic data reveal additional subdivision such that colonies within recovery units do not form single genotype clusters consistent with recovery unit boundaries. Genotype cluster membership support historical gene flow among colonies in the easternmost West Desert Recovery Unit with the westernmost Pausaugunt colonies and among the eastern Pausaugunt colonies and the Awapa Recovery unit to the north. In order to maintain the long‐term viability of the species, there needs to be an increased focus on maintaining suitable habitat between groups of existing populations that can act as connective corridors. The location of future translocation sites should be located in areas that will maximize connectivity, leading to maintenance of genetic variation and evolutionary potential.  相似文献   

5.
6.
The flea (Oropsylla hirsuta) is an important vector of the plague bacterium, Yersinia pestis, in black-tailed prairie dog (Cynomys ludovicianus) colonies. We developed 11 anonymous microsatellite primers for O. hirsuta using a subtractive hybridization procedure. All primers were polymorphic exhibiting 4-12 alleles.  相似文献   

7.
The relationship between vegetation cover and soil seed banks was studied in five different ungulate herbivore-prairie dog treatment combinations at three northern mixed-grass prairie sites in Badlands National Park, South Dakota. There were distinct differences in both the seed bank composition and the aboveground vegetation between the off-prairie dog colony treatments and the on-colony treatments. The three on-colony treatments were similar to each other at all three sites with vegetation dominated by the forbs Dyssodia papposa, Hedeoma spp., Sphaeralcea coccinea, Conyza canadensis, and Plantago patagonica and seed banks dominated by the forbs Verbena bracteata and Dyssodia papposa. The two off-colony treatments were also similar to each other at all three sites. Vegetation at these sites was dominated by the grasses Pascopyrum smithii, Bromus tectorum and Bouteloua gracilis and the seed banks were dominated by several grasses including Bromus tectorum, Monroa squarrosa, Panicum capillare, Sporobolus cryptandra and Stipa viridula. A total of 146 seedlings representing 21 species germinated and emerged from off-colony treatments while 3069 seedlings comprising 33 species germinated from on-colony treatments. Fifteen of the forty species found in soil seed banks were not present in the vegetation, and 57 of the 82 species represented in the vegetation were not found in the seed banks. Few dominant species typical of mixed-grass prairie vegetation germinated and emerged from seed banks collected from prairie dog colony treatments suggesting that removal of prairie dogs will not result in the rapid reestablishment of representative mixed-grass prairie unless steps are taken to restore the soil seed bank.  相似文献   

8.
Tigers are often transported for education, conservation, and zoo enhancement purposes, however the effect of transfer on them has not yet been documented. Our objective was to evaluate how transport affects the behavior and physiology of tigers, taking into account previous experience with the transport procedure. We simulated transport by relocating five tigers in a small individual transfer cage. Two tigers had prior experience with the procedure, and three tigers were naïve to it. After 30 min, each tiger was released back into their original enclosure. Physiological measurements were recorded for four of the five tigers; these included respiration rate and immune‐reactive fecal cortisol response using radioimmunoassay. We also recorded the behavior of all five tigers before, during, and after transport. Our behavioral analysis included activity level, pacing behavior, time spent investigating, respiration rate, and ear position. Average respiration rates of all tigers increased from 56.1 breaths/min to 94.6 breaths/min during transport and to 132.3 breaths/min 10 min following release into their enclosures. Average immune‐reactive cortisol concentrations peaked 3–6 days after transport at 239% above baseline and returned to baseline levels 9–12 days afterward. During their peak time block, naïve tigers exhibited a higher average increase in cortisol levels (482% above baseline) than the experienced tigers (158% above baseline). The naïve tigers' average immune‐reactive cortisol concentration remained elevated for a longer period (9–12 days) than the experienced tigers' (3–6 days). In both groups, behavioral responses ranged from active to inactive, however naïve tigers performed these repertoires with greater intensity by pacing faster and performing fewer state changes. Results suggest that prior exposure to elements of the transport procedure may lead to some level of habituation, thus reducing the effects of transportation stress. Zoo Biol 23:335–346, 2004. © 2004 Wiley‐Liss, Inc.  相似文献   

9.
Abstract. A common explanation for the changes in species abundance following a fire is a shift in competitive ranking. However, experimental tests have been inconsistent and generally do not support this explanation. I examined the competitive ability of an abundant C4 grass, Andropogon gerardii, and a C3 forb, Ratibida pinnata, in a prairie remnant in northern Ohio, USA, for each of three years following a spring burn in 1996. While the abiotic environment directly influenced both species similarly, relative competitive abilities in terms of growth changed markedly: in 1996 Andropogon was less inhibited by neighbors; in 1997 both Andropogon and Ratibida had similar competitive abilities; and in 1998 Ratibida was less inhibited by neighbors. This shift in competitive response ranking paralleled the changes in relative abundance for the two species. In contrast, the effect of neighbors on survival changed markedly over time but did not differ among the two species. Thus, fire may influence species abundance through changing species competitive response ranking, at least in terms of growth.  相似文献   

10.
Given climate change, species' climatically suitable habitats are increasingly expected to shift poleward. Some imperilled populations towards the poleward edge of their species' range might therefore conceivably benefit from climate change. Interactions between climate and population dynamics may be complex, however, with climate exerting effects both indirectly via influence over food availability and more directly, via effects on physiology and its implications for survival and reproduction. A thorough understanding of these interactions is critical for effective conservation management. We therefore examine the relationship between climate, survival and reproduction in Canadian black‐tailed prairie dogs, a threatened keystone species in an imperilled ecosystem at the northern edge of the species' range. Our analyses considered 8 years of annual mark–recapture data (2007–2014) in relation to growing degree days, precipitation, drought status and winter severity, as well as year, sex, age and body mass. Survival was strongly influenced by the interaction of drought and body mass class, and winter temperature severity. Female reproductive status was associated with the interaction of growing degree days and growing season precipitation, with spring precipitation and with winter temperature severity. Results related to body mass suggested that climatic variables exerted their effects via regulation of food availability with potential linked effects of food quality, immunological and behavioural implications, and predation risk. Predictions of future increases in drought conditions in North America's grassland ecosystems have raised concerns for the outlook of Canadian black‐tailed prairie dogs. Insights gained from the analyses, however, point to mitigating species management options targeted at decoupling the mechanisms by which climate exerts its negative influence. Our approach highlights the importance of understanding the interaction between climate and population dynamics in peripheral populations whose viability might ultimately determine their species' ability to track climatically suitable space.  相似文献   

11.
Koichi Tanaka 《Oecologia》1989,81(4):459-464
Summary Although spider webs may be effective in trapping prey, they require energy for construction. The design of webs varies in complexity from species to species. I assume that the energetic cost of web construction is significantly different among web types or species. This cost may constrain foraging tactics, particularly web relocation, because web relocation also requires energy to make a new web. To clarify the effect of the cost of web construction on web relocation, the energy cost of web construction and the rate of web relocation were estimated for the spider Agelena limbata. This spider constructs a sheet-funnel web consisting of a tight mesh of silk threads. This web was costly in terms of the energy needed for construction, which ranged from 9 to 19 times the daily maintenance energy. The daily rate of web relocation was below 1%, indicating high web-site tenacity. Relocation rates of species which built different types of web were compared in relation to cost of web construction. Orbweavers, which produce less costly webs than sheet-funnel weavers, relocate webs more frequently. Sheetweavers, which make webs of intermediate cost, appear to relocate webs more frequently than sheetfunnel weavers but less frequently than orbweavers. These results suggest that the energy cost of web construction is important in determining the frequency of web relocation.  相似文献   

12.
Periodontal disease is an oral disease common in middle-aged dogs and cats, with halitosis being the most common sign. There are many commercial products containing chlorhexidine, cetylpyridinium chloride (CPC), zinc salts and essential oils for controlling halitosis and periodontal disease. CPC is a quaternary ammonium compound and has a broad spectrum antimicrobial activity. In this study, oral spray (OS) and gel (OG) containing CPC was applied to the dogs’ teeth twice daily for 3 weeks, and their effect in controlling periodontal disease and halitosis was examined. In the 3-week study, OS and OG were significantly effective in controlling plaque, calculus, and halitosis. Therefore, the OS and OG containing CPC were effective in controlling periodontal disease and halitosis in dogs.  相似文献   

13.
14.
To investigate the effect of repeated regrouping and relocation (R&R) on behaviour of steers, 72 Holstein–Friesian (14-month-old; 441 ± 3.2 kg) steers were assigned to either control (n = 30; C) or regrouped (n = 42; R) treatments and housed six per pen in 12 pens. The R steers were exposed to six R&R over 84 days. New pen cohorts were allowed to stabilise for 14 days and none of the R steers were allowed to share the same pen or pen mates, where or with whom, they were previously housed. Control steers were housed in the same pen with the same pen mates. Each steer was marked on its back with an individual identification code. Twelve cameras were used to observe and record behaviour for each pen allowing observation of all individual steers continuously for a week following each R&R. The following behaviours were recorded for each steer: lying, standing, eating, drinking, head-to-head contact with another animal while not eating, head contact with the body of another animal and bodily contact with none, one, two or three steers. Behaviour was observed by instantaneous scan sampling after each R&R, at 2 min intervals for 2 h on day 1; at further 20 min intervals on days 1 and 2; and at 120 min intervals from day 3 to 7. Where appropriate, the % of time spent in each behaviour was calculated from the data on total counts in each behavioural category. The total count data were analysed by χ2-statistics for all behavioural categories. Steers were weighed before each R&R. Average daily gain from day 0 to 84 was analysed by ANOVA. During the first 2 h observation period following mixing, R steers displayed a greater (P < 0.05) % of time standing (following the first to sixth R&R), eating (first to fourth and sixth R&R) and drinking (first, third and fourth R&R) than control steers. In the 20 min observational period, a greater % (P < 0.05) of time was spent standing, eating and drinking in R than in C steers following each R&R. In the 120 min observation period, R steers spent a greater (P < 0.05) % of time lying with less body contact behaviours than C steers, and these findings increased in the fourth, fifth and sixth R&R. These data suggest that there was partial adaptation to repeated R&R at the first two R&R followed by complete adaptation at the third and subsequent R&R, with no detrimental effect on animal performance.  相似文献   

15.
AIMS: The aim of this study is to evaluate the effect of hydraulic retention time (HRT) on the development of aerobically grown microbial granules. METHODS AND RESULTS: Five column-shaped sequential aerobic sludge blanket reactors (SASBRs) were seeded with aerobically grown microbial granules and operated in a cyclic mode at different HRTs. At the shortest HRT of 1 h, the strong hydraulic pressure triggered biomass washout and led to reactor failure. At the longest HRT of 24 h, which represented the weakest hydraulic selection in this study, aerobic granules were gradually substituted by bioflocs because of the lower frequency of volumetric exchange. Within the optimum range of HRTs from 2 to 12 h, however, aerobic granules became stabilized in the presence of adequate hydraulic selection in the reactors, with good mixed liquor volatile suspended solids (MLVSS) retention, high volumetric chemical oxygen demand (COD) removal, low sludge volume index (SVI) values, good effluent quality, low sludge production rate, stronger and more compact structures, high cell hydrophobicity and high ratios of extracellular polysaccharides (PS) to extracellular proteins (PN). CONCLUSIONS: HRTs between 2 and 12 h provided the hydraulic selection pressures favourable for the formation and maintenance of stable aerobic granules with good settleability and activity. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first systematic study on the effect of HRT on heterotrophic aerobic granules. The results of the investigation are useful in understanding how aerobic granules can be applied for wastewater treatment.  相似文献   

16.
Summary A factorial field experiment was designed to test the effects of small mammals and above- and below-ground invertebrates on plant species richness and composition in native tallgrass prairie at Konza Prairie Research Natural Area, northeast Kansas. Over a 4-year period, Microtus ochrogaster densities were maintained by live-trapping in fenced plots, and invertebrate levels were reduced using the pesticides carbaryl for above-ground invertebrates and an organophosphate (isofenphos) for belowground invertebrates. ANOVA according to a split-plot design of plant species biomass data harvested in 1984 and 1986 revealed few significant effects of either small mammal densities or pesticide application. Of 54 species harvested from both sample dates, only 10 were significantly affected by either treatment. Analysis of species richness according to 8 life-form classes provided a clearer pattern of response than did biomass either by species or life-form class. For example, numbers of C4 grasses were reduced by increasing small mammal densities, whereas numbers of C4 annual forbs were lowest when above-ground herbivory was reduced. While consumers have been shown to have strong effects on successional communities, the few significant results observed in this study suggests that the manipulated levels of small mammals and insects had few effects on a mature tallgrass prairie.Deceased May, 1986  相似文献   

17.
To be effective, steam pretreatment is typically carried out at temperatures/pressures above the glass transition point (Tg) of biomass lignin so that it can partly fluidize and relocate. The relocation of Douglas-fir and corn stover derived lignin was compared with the expectation that, with the corn stover lignin's lower hydrophobicity and molecular weight, it would be more readily fluidized. It was apparent that the Tg of lignin decreased as the moisture increased, with the easier access of steam to the corn stover lignin promoting its plasticization. Although the softwood lignin was more recalcitrant, when it was incorporated onto filter paper, it too could be plasticized, with its relocation enhancing enzymatic hydrolysis. When lignin recondensation was minimized, the increased hydrophobicity suppressed lignin relocation. It was apparent that differences in the accessibility of the lignin present in Douglas-fir and corn stover to steam significantly impacted lignin fluidization, relocation, and subsequent cellulose hydrolysis.  相似文献   

18.
We evaluated serum antibodies against Rickettsia japonica in 517 dogs (430 stray dogs and 87 pet dogs) and 164 humans in Okinawa, Japan, by indirect immunofluorescence assay. The seropositive rate in stray dogs was significantly higher than that in pet dogs (30.7 versus 4.6%, P<0.01). This high prevalence rate is attributed to the understandably frequent environmental exposure of stray dogs to tick infestation. Human samples obtained from Okinawa and Sapporo also showed a significant difference in seropositive antibody percentages (45.1 and 12.0%, respectively, P<0.01). This result suggests that there has been pre-exposure to spotted fever group rickettsia in humans in Okinawa.  相似文献   

19.
作物多样性种植对植食性昆虫行为的影响   总被引:1,自引:0,他引:1  
董文霞  徐宁  肖春 《昆虫知识》2013,50(4):1133-1140
通过农作物遗传多样性、物种多样性的优化布局和种植,增加农田的物种多样性和农田生态系统的稳定性,有效地减轻作物虫害的危害,已经成为国际上农业研究的热点和农业害虫防治的发展趋势。多样性种植对昆虫的影响及其作用机制很大程度上取决于对植食性昆虫的行为反应。多样性种植主要通过干扰植食性昆虫的定向、交配、产卵、转移等行为,影响其在作物上定居和繁殖,进而影响其对植物的危害程度。根据国内外研究进展,本文介绍了作物多样性种植对植食性昆虫行为的影响,并讨论了目前存在的问题和研究前景。  相似文献   

20.
In tallgrass prairie, plant species interactions regulated by their associated mycorrhizal fungi may be important forces that influence species coexistence and community structure; however, the mechanisms and magnitude of these interactions remain unknown. The objective of this study was to determine how interspecific competition, mycorrhizal symbiosis, and their interactions influence plant community structure. We conducted a factorial experiment, which incorporated manipulations of abundance of dominant competitors, Andropogon gerardii and Sorghastrum nutans, and suppression of mycorrhizal symbiosis using the fungicide benomyl under two fire regimes (annual and 4-year burn intervals). Removal of the two dominant C4 grass species altered the community structure, increased plant species richness, diversity, and evenness, and increased abundance of subdominant graminoid and forb species. Suppression of mycorrhizal fungi resulted in smaller shifts in community structure, although plant species richness and diversity increased. Responses of individual plant species were associated with their degree of mycorrhizal responsiveness: highly mycorrhizal responsive species decreased in abundance and less mycorrhizal responsive species increased in abundance. The combination of dominant-grass removal and mycorrhizal suppression treatments interacted to increase synergistically the abundance of several species, indicating that both processes influence species interactions and community organization in tallgrass prairie. These results provide evidence that mycorrhizal fungi affect plant communities indirectly by influencing the pattern and strength of plant competitive interactions. Burning strongly influenced the outcome of these interactions, which suggests that plant species diversity in tallgrass prairie is influenced by a complex array of interacting processes, including both competition and mycorrhizal symbiosis. Received: 7 April 1999 / Accepted: 30 July 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号