首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
2.
Aim Predicting and preventing invasions depends on knowledge of the factors that make ecosystems susceptible to invasion. Current studies generally rely on non‐native species richness (NNSR) as the sole measure of ecosystem invasibility; however, species identity is a critical consideration, given that different ecosystems may have environmental characteristics suitable to different species. Our aim was to examine whether non‐native freshwater fish community composition was related to ecosystem characteristics at the landscape scale. Location United States. Methods We described spatial patterns in non‐native freshwater fish communities among watersheds in the Mid‐Atlantic region of the United States based on records of establishment in the U.S. Geological Survey’s Nonindigenous Aquatic Species Database. We described general relationships between non‐native species and ecosystem characteristics using canonical correspondence analysis. We clustered watersheds by non‐native fish community and described differences among clusters using indicator species analysis. We then assessed whether non‐native communities could be predicted from ecosystem characteristics using random forest analysis and predicted non‐native communities for uninvaded watersheds. We estimated which ecosystem characteristics were most important for predicting non‐native communities using conditional inference trees. Results We identified four non‐native fish communities, each with distinct indicator species. Non‐native communities were predicted based on ecosystem characteristics with an accuracy of 80.6%, with temperature as the most important variable. Relatively uninvaded watersheds were predicted to be invasible by the most diverse non‐native community. Main conclusions Non‐native species identity is an important consideration when assessing ecosystem invasibility. NNSR alone is an insufficient measure of invasibility because ecosystems with equal NNSR may not be equally invasible by the same species. Our findings can help improve predictions of future invasions and focus management and policy decisions on particular species in highly invasible ecosystems.  相似文献   

3.
Information on the response of vegetation to different environmental drivers, including rainfall, forms a critical input to ecosystem models. Currently, such models are run based on parameters that, in some cases, are either assumed or lack supporting evidence (e.g., that vegetation growth across Africa is rainfall‐driven). A limited number of studies have reported that the onset of rain across Africa does not fully explain the onset of vegetation growth, for example, drawing on the observation of prerain flush effects in some parts of Africa. The spatial extent of this prerain green‐up effect, however, remains unknown, leaving a large gap in our understanding that may bias ecosystem modelling. This paper provides the most comprehensive spatial assessment to‐date of the magnitude and frequency of the different patterns of phenology response to rainfall across Africa and for different vegetation types. To define the relations between phenology and rainfall, we investigated the spatial variation in the difference, in number of days, between the start of rainy season (SRS) and start of vegetation growing season (SOS); and between the end of rainy season (ERS) and end of vegetation growing season (EOS). We reveal a much more extensive spread of prerain green‐up over Africa than previously reported, with prerain green‐up being the norm rather than the exception. We also show the relative sparsity of postrain green‐up, confined largely to the Sudano‐Sahel region. While the prerain green‐up phenomenon is well documented, its large spatial extent was not anticipated. Our results, thus, contrast with the widely held view that rainfall drives the onset and end of the vegetation growing season across Africa. Our findings point to a much more nuanced role of rainfall in Africa's vegetation growth cycle than previously thought, specifically as one of a set of several drivers, with important implications for ecosystem modelling.  相似文献   

4.
5.
Question: How is tundra vegetation related to climatic, soil chemical, geological variables and grazing across a very large section of the Eurasian arctic area? We were particularly interested in broad‐scale vegetation‐environment relationships and how well do the patterns conform to climate‐vegetation schemes. Material and Methods: We sampled vegetation in 1132 plots from 16 sites from different parts of the Eurasian tundra. Clustering and ordination techniques were used for analysing compositional patterns. Vegetation‐environment relationships were analysed by fitting of environmental vectors and smooth surfaces onto non‐metric multidimensional scaling scattergrams. Results: Dominant vegetation differentiation was associated with a complex set of environmental variables. A general trend differentiated cold and continental areas from relatively warm and weakly continental areas, and several soil chemical and physical variables were associated with this broad‐scaled differentiation. Especially soil chemical variables related to soil acidity (pH, Ca) showed linear relationships with the dominant vegetation gradient. This was closely related to increasing cryoperturbation, decreasing precipitation and cooler conditions. Remarkable differences among relatively adjacent sites suggest that local factors such as geological properties and lemming grazing may strongly drive vegetation differentiation. Conclusions: Vegetation differentiation in tundra areas conforms to a major ecocline underlain by a complex set of environmental gradients, where precipitation, thermal conditions and soil chemical and physical processes are coupled. However, local factors such as bedrock conditions and lemming grazing may cause marked deviations from the general climate‐vegetation models. Overall, soil chemical factors (pH, Ca) turned out to have linear relationship with the broad‐scale differentiation of arctic vegetation.  相似文献   

6.
7.
Carabid beetles form rich and abundant communities in arable landscapes. Their generalist feeding behaviour and similar environmental requirements raise questions about the mechanisms allowing the coexistence of such species‐rich assemblages. We hypothesized that subtle niche partitioning comes into play on spatial, temporal, or trophic basis. To test this, we performed experiments and made observations on the behaviour of two sympatric carabid species of similar size and life cycle, Bembidion quadrimaculatum L. and Phyla obtusa Audinet‐Serville (both Coleoptera: Carabidae: Bembidiini). We compared plant climbing behaviour, daily activity patterns, and trophic preferences between the two carabid species under laboratory conditions. Whereas no clear difference in trophic preference was observed, our results suggest temporal niche differentiation at the nychthemeron scale (a period of 24 consecutive hours), with one of the species being more diurnal and the other more nocturnal, and spatial differentiation in their habitat use at the plant stratum scale. Intra‐specific variation suggests that micro‐scale spatio‐temporal niche differentiation could be mediated by behavioural plasticity in these two carabid species. We speculate that such behavioural plasticity may provide carabid beetles with a high adaptive potential in intensively managed agricultural areas.  相似文献   

8.
β‐Phycoerythrin is a color protein with several applications, from food coloring to molecular labeling. Depending on the application, different purity is required, affecting production cost and price. Different production and purification strategies for B‐phycoerythrin have been developed, the most studied are based on the production using Porphyridium cruentum and purified using chromatographic techniques or aqueous two‐phase systems. The use of the latter can result in a less expensive and intensive recovery of the protein, but there is lack of a proper economic analysis to study the effect of using aqueous two‐phase systems in a scaled‐up process. This study analyzed the production of B‐Phycoerythrin using real data obtained during the scale‐up of a bioprocess using specialized software (BioSolve, Biopharm Services, UK). First, a sensitivity analysis was performed to identify critical parameters for the production cost, then a Monte Carlo analysis to emulate real processes by adding uncertainty to the identified parameters. Next, the bioprocess was analyzed to determine its financial attractiveness and possible optimization strategies were tested and discussed. Results show that aqueous two‐phase systems retain their advantages of low cost and intensive recovery (54.56%); the costs of production per gram calculated (before titer optimization: US$15,709 and after optimization: US$2,374) allowed to obtain profit (in the range of US$millions in a 10‐year period) for a potential company taking this production method by comparing the production cost against commercial prices. The bioprocess analyzed is a promising and profitable method for the generation of a highly purified B‐phycoerythrin. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1472–1479, 2016  相似文献   

9.
10.
Droughts are expected to become more frequent and more intense under climate change. Plant mortality rates and biomass declines in response to drought depend on stomatal and xylem flow regulation. Plants operate on a continuum of xylem and stomatal regulation strategies from very isohydric (strict regulation) to very anisohydric. Coexisting species may display a variety of isohydricity behaviors. As such, it can be difficult to predict how to model the degree of isohydricity at the ecosystem scale by aggregating studies of individual species. This is nonetheless essential for accurate prediction of ecosystem drought resilience. In this study, we define a metric for the degree of isohydricity at the ecosystem scale in analogy with a recent metric introduced at the species level. Using data from the AMSR‐E satellite, this metric is evaluated globally based on diurnal variations in microwave vegetation optical depth (VOD), which is directly related to leaf water potential. Areas with low annual mean radiation are found to be more anisohydric. Except for evergreen broadleaf forests in the tropics, which are very isohydric, and croplands, which are very anisohydric, land cover type is a poor predictor of ecosystem isohydricity, in accordance with previous species‐scale observations. It is therefore also a poor basis for parameterizing water stress response in land‐surface models. For taller ecosystems, canopy height is correlated with higher isohydricity (so that rainforests are mostly isohydric). Highly anisohydric areas show either high or low underlying water use efficiency. In seasonally dry locations, most ecosystems display a more isohydric response (increased stomatal regulation) during the dry season. In several seasonally dry tropical forests, this trend is reversed, as dry‐season leaf‐out appears to coincide with a shift toward more anisohydric strategies. The metric developed in this study allows for detailed investigations of spatial and temporal variations in plant water behavior.  相似文献   

11.
12.
The availability and utility of genome‐scale metabolic reconstructions have exploded since the first genome‐scale reconstruction was published a decade ago. Reconstructions have now been built for a wide variety of organisms, and have been used toward five major ends: (1) contextualization of high‐throughput data, (2) guidance of metabolic engineering, (3) directing hypothesis‐driven discovery, (4) interrogation of multi‐species relationships, and (5) network property discovery. In this review, we examine the many uses and future directions of genome‐scale metabolic reconstructions, and we highlight trends and opportunities in the field that will make the greatest impact on many fields of biology.  相似文献   

13.
14.
Tetraselmis sp. and Nannochloropsis oculata, cultivated in industrial‐scale bioreactors, produced 2.33 and 2.44% w/w lipid (calculated as the sum of fatty acid methyl esters) in dry biomass, respectively. These lipids contained higher amounts of neutral lipids and glycolipids plus sphingolipids, than phospholipids. Lipids of Tetraselmis sp. were characterized by the presence of eicosapentaenoic acid (that was located mainly in phospholipids), and octadecatetraenoic acid (that was equally distributed among lipid fractions), while these fatty acids were completely absent in N. oculata lipids. Additionally, lipids produced by 16 newly isolated strains from Greek aquatic environments (cultivated in flask reactors) were studied. The highest percentage of lipids was found in Prorocentrum triestinum (3.69% w/w) while the lowest in Prymnesium parvum (0.47% w/w). Several strains produced lipids rich in eicosapentaenoic and docosahexaenoic acids. For instance, docosahexaenoic acid was found in high percentages in lipids of Amphidinium sp. S1, P. parvum, Prorocentrum minimum and P. triestinum, while lipids produced by Asterionella sp. (?) S2 contained eicosapentaenoic acid in high concentration. These lipids, containing ω‐3‐long‐chain polyunsaturated fatty acids, have important applications in the food and pharmaceutical industries and in aquaculture.  相似文献   

15.
Abstract. Within an ombrogenous part of N. Kisselbergmosen, Rødenes, SE Norway, fine‐scale changes in species abundance, successional trends relative to the main gradients (as represented by DCA axes), and co‐ordinated change within pairs of the bottom layer species are studied. Data sets were sampled twice with a five‐year interval, and included species abundance and cover of mud bottom, naked peat and litter in 436 sample plots (16 cm× 16 cm), and species abundance in 6976 subplots (4 cm× 4 cm). Depth from the surface of subplots to the water table was estimated in 1991. Most summers and growing seasons were somewhat drier than normal in the 5‐yr period. The area covered by mud‐bottom, naked peat and litter increased significantly, as did the frequencies of the dwarf shrubs Calluna vulgaris and Andromeda polifolia in hummocks and upper lawn. Sample plots were significantly displaced downward the peat productivity gradient (DCA 2), reflecting the reduced cover of many bottom layer species, including all Sphagnum spp. Significant coordinated changes in cover of bottom layer species are described. The changes observed in hummocks support the existence of a local regeneration cycle, as suggested by other researchers. Some of the vegetation changes seem parallel to those reported from areas with a higher nitrogen deposition, but it is not likely that nitrogen deposition alone is the major cause of the observed changes. Between‐year variation in population size and climatic fluctuations may as well explain the observed changes.  相似文献   

16.
17.
Rivers are among the world's most modified ecosystems, with poor water quality representing a prominent problem for over 200 years, especially in urban areas. In Western Europe, however, industrial decline, tighter regulation and improved wastewater treatment have combined over recent decades to create conditions conducive to extensive restoration and positive biological change. Here, we evaluate the river macroinvertebrate fauna of England and Wales in relation to water quality, physical habitat and climate over almost two decades. We predicted that biological recovery would be characterized by: (i) greater taxon richness and prevalence of pollution‐sensitive taxa, (ii) larger changes in more heavily urbanized catchments, and (iii) temporal trends in assemblage structure that correlated with improving water quality. Family level richness increased on average by nearly 20% during 1991–2008, accompanied by a widespread shift towards taxa characteristic of well‐oxygenated and less polluted waters. Changes were largest in the most urbanized catchments. A combination of natural gradients and anthropogenic pressures explained the variation among sites, whereas temporal changes correlated with improving water quality and variations in discharge. Positive trends were not universal, however, and there was localized deterioration in some streams draining upland areas and in the lowland south east. Our results are consistent with a large‐scale ecological recovery of English and Welsh rivers since 1990, probably continuing a trend from the mid‐20th century. Based on these results, we suggest: (i) freshwater communities are resilient to long‐term anthropogenic pressures, (ii) biodiversity benefits can arise from investment and long‐term restoration intended largely to enhance ecosystem services such as drinking water and sanitary concerns, and (iii) long‐term monitoring data collected for statutory purposes–based in this case on nearly 50 000 samples–can address scientific questions at spatial and temporal extents seldom achieved in research programmes.  相似文献   

18.
19.
20.
Biogas could provide a more sustainable energy source than wood fuels for rural households in sub‐Saharan African. However, functioning of biogas digesters can be limited in areas of low water availability. The water required is approximately 50 dm3 day?1 for each cow and 10 dm3 day?1 for each pig providing manure to the digester, or 25 (±6) dm3 day?1 for each person in the household, using a digester volume of 1.3 (±0.3) m3 capita?1. Here, we consider the potential of domestic water recycling, rainwater harvesting, and aquaculture to supply the water needed for digestion in different countries of sub‐Saharan Africa. Domestic water recycling was found to be important in every country but was usually insufficient to meet the requirements of the digester, with households in 72% of countries need to collect additional water. Rooftop rainwater harvesting also has an important role, iron roofs being more effective than thatched roofs at collecting water. However, even with an iron roof, the size of roof commonly found in sub‐Saharan Africa (15 to 40 m2) is too small to collect sufficient water, requiring an extra area (in m2) for each person of (R/100) (where R is the rainfall in mm). If there is a local market for fish, stocking a pond with tilapia, fed on plankton growing on bioslurry from the digester, could provide an important source of additional income and hold the water required by the digester. In areas where rainfall is low and seasonal, the fishpond might be stocked only in the rainy season, allowing the pond to be covered during the dry period to reduce evaporation. If evaporative losses (E in mm) exceed rainfall, an extra catchment area is needed to maintain the water level in the pond, equivalent to approximately (1.5 × ((E?R)/R)) m2 for each person in the household.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号