首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Grizzly bears (Ursus arctos) and American black bears (U. americanus) are sympatric in much of Yellowstone National Park. Three primary bear foods, cutthroat trout (Oncorhynchus clarki), whitebark pine (Pinus albicaulis) nuts, and elk (Cervus elaphus), have declined in recent years. Because park managers and the public are concerned about the impact created by reductions in these foods, we quantified bear diets to determine how bears living near Yellowstone Lake are adjusting. We estimated diets using: 1) stable isotope and mercury analyses of hair samples collected from captured bears and from hair collection sites established along cutthroat trout spawning streams and 2) visits to recent locations occupied by bears wearing Global Positioning System collars to identify signs of feeding behavior and to collect scats for macroscopic identification of residues. Approximately 45 ± 22% ( ± SD) of the assimilated nitrogen consumed by male grizzly bears, 38 ± 20% by female grizzly bears, and 23 ± 7% by male and female black bears came from animal matter. These assimilated dietary proportions for female grizzly bears were the same as 10 years earlier in the Lake area and 30 years earlier in the Greater Yellowstone Ecosystem. However, the proportion of meat in the assimilated diet of male grizzly bears decreased over both time frames. The estimated biomass of cutthroat trout consumed by grizzly bears and black bears declined 70% and 95%, respectively, in the decade between 1997–2000 and 2007–2009. Grizzly bears killed an elk calf every 4.3 ± 2.7 days and black bears every 8.0 ± 4.0 days during June. Elk accounted for 84% of all ungulates consumed by both bear species. Whitebark pine nuts continue to be a primary food source for both grizzly bears and black bears when abundant, but are replaced by false-truffles (Rhizopogon spp.) in the diets of female grizzly bears and black bears when nut crops are minimal. Thus, both grizzly bears and black bears continue to adjust to changing resources, with larger grizzly bears continuing to occupy a more carnivorous niche than the smaller, more herbivorous black bear. © 2012 The Wildlife Society.  相似文献   

2.
Grizzly bears (Ursus arctos) cohabit landscapes with a diversity of ungulates, but the degree to which grizzly bears are carnivorous is unclear and likely varies across landscapes. We used stable isotopes of carbon and nitrogen to infer seasonal diets of grizzly bears in northern British Columbia while studying predator–prey dynamics in a largely undisturbed system. We found high seasonal variation in diets among individuals; males consumed more ungulate prey than did females throughout the year. In fall, both sexes increased their consumption of prey; large ungulates constituted 51% and 32% of the fall diets of males and females, respectively. This increase in carnivory appeared to be primarily associated with consumption of elk (Cervus elaphus). Estimates of prey proportions in the diets of grizzly bears were highly sensitive to the range of tissue to diet discrimination values that were incorporated in isotope models. Small changes in discrimination values resulted in estimated prey intakes that varied more than threefold as a percentage of the diet depending on sex and season. We caution against using standard discrimination values, and we recommend that diet reconstructions using stable isotopes be based on tissue-specific values that would be appropriate for the species of interest. © 2012 The Wildlife Society.  相似文献   

3.
The quality and availability of resources are known to influence spatial patterns of animal density. In Yellowstone National Park, relationships between the availability of resources and the distribution of grizzly bears (Ursus arctos) have been explored but have yet to be examined in American black bears (Ursus americanus). We conducted non-invasive genetic sampling during 2017–2018 (mid-May to mid-July) and applied spatially explicit capture-recapture models to estimate density of black bears and examine associations with landscape features. In both years, density estimates were higher in forested vegetation communities, which provide food resources and thermal and security cover preferred by black bears, compared with non-forested areas. In 2017, density also varied by sex, with female densities being higher than males. Based on our estimates, the northern range of Yellowstone National Park supports one of the highest densities of black bears (20 black bears/100 km2) in the northern Rocky Mountains (6–12 black bears/100 km2 in other regions). Given these high densities, black bears could influence other wildlife populations more than previously thought, such as through displacement of sympatric predators from kills. Our study provides the first spatially explicit estimates of density for black bears within an ecosystem that contains the majority of North America's large mammal species. Our density estimates provide a baseline that can be used for future research and management decisions of black bears, including efforts to reduce human–bear conflicts.  相似文献   

4.
Abstract: During the past 2 decades, the grizzly bear (Ursus arctos) population in the Greater Yellowstone Ecosystem (GYE) has increased in numbers and expanded its range. Early efforts to model grizzly bear mortality were principally focused within the United States Fish and Wildlife Service Grizzly Bear Recovery Zone, which currently represents only about 61% of known bear distribution in the GYE. A more recent analysis that explored one spatial covariate that encompassed the entire GYE suggested that grizzly bear survival was highest in Yellowstone National Park, followed by areas in the grizzly bear Recovery Zone outside the park, and lowest outside the Recovery Zone. Although management differences within these areas partially explained differences in grizzly bear survival, these simple spatial covariates did not capture site-specific reasons why bears die at higher rates outside the Recovery Zone. Here, we model annual survival of grizzly bears in the GYE to 1) identify landscape features (i.e., foods, land management policies, or human disturbances factors) that best describe spatial heterogeneity among bear mortalities, 2) spatially depict the differences in grizzly bear survival across the GYE, and 3) demonstrate how our spatially explicit model of survival can be linked with demographic parameters to identify source and sink habitats. We used recent data from radiomarked bears to estimate survival (1983–2003) using the known-fate data type in Program MARK. Our top models suggested that survival of independent (age ≥ 2 yr) grizzly bears was best explained by the level of human development of the landscape within the home ranges of bears. Survival improved as secure habitat and elevation increased but declined as road density, number of homes, and site developments increased. Bears living in areas open to fall ungulate hunting suffered higher rates of mortality than bears living in areas closed to hunting. Our top model strongly supported previous research that identified roads and developed sites as hazards to grizzly bear survival. We also demonstrated that rural homes and ungulate hunting negatively affected survival, both new findings. We illustrate how our survival model, when linked with estimates of reproduction and survival of dependent young, can be used to identify demographically the source and sink habitats in the GYE. Finally, we discuss how this demographic model constitutes one component of a habitat-based framework for grizzly bear conservation. Such a framework can spatially depict the areas of risk in otherwise good habitat, providing a focus for resource management in the GYE.  相似文献   

5.
6.
Ingestion of lead rifle bullet fragments found in discarded hunter-harvested ungulate gut piles negatively affects avian wildlife. Some large carnivores, such as grizzly bears, are also known to target these gut piles as a food source and are therefore potentially at risk of lead exposure. We investigated whether large carnivores in the greater Yellowstone ecosystem were exposed to lead, and if so, if ammunition ingested from gut piles was an apparent source of exposure. Grizzly bears (Ursus arctos, n = 82) exhibited higher blood lead levels (median = 4.4 µg/dL, range 1.1–18.6 µg/dL) than black bears (Ursus americanus, n = 35, median = 1.6, range 0.5–6.9 µg/dL), but blood lead levels did not increase during the autumn hunting season when potentially lead-tainted gut piles are available. Wolves (Canis lupus, n = 21) and cougars (Puma concolor, n = 8) showed lead concentrations near or below the minimum level of detection in both blood and tissue samples. Unlike findings in previous studies on avian scavengers, we did not find lead ammunition fragments to be a widespread source of lead exposure in large carnivores. Grizzly bears do, however, exhibit blood lead levels that are higher than what is considered safe in humans, but the source of this exposure remains unknown. © 2011 The Wildlife Society.  相似文献   

7.
Omnivores are generally opportunistic foragers and have a flexible dietary response to resource abundance and availability. Their populations may consist of individuals that differ from each other in terms of their trophic positions, which implies that the dietary response to resource fluctuations differs within a population. We investigated how changes in the abundance of sika deer (Cervus nippon) affected dietary variation and body condition in the Asian black bear (Ursus thibetanus). We used fecal analysis, nitrogen stable isotopes (δ15N), and body measurements to determine whether the variation in dietary meat content of Asian black bears is positively related to variations in the density of the sika deer population, whether male bears have a higher trophic position compared to females, and whether dietary meat content is positively related with body mass or body condition of bears. We found a positive correlation between the occurrence of deer remains in bear feces and deer density, suggesting that bears change their diet in response to temporal changes in deer density. Male bears had higher δ15N values than females, and neither values varied when deer density decreased. Males selectively consumed deer after a reduction in deer density, whereas females consistently consumed more plant-based diet. The δ15N values were positively related with body mass of adult (>4 yr) bears but had no relationship with body condition of bears of either sex or any age class. Deer seem to be an important food source for large adult males, which have an advantage in mating. Thus, increasing herbivore abundance and availability altered the foraging strategy of Asian black bears, but the importance of herbivore on bear diet differs within a population.  相似文献   

8.
9.
Asymmetry in bilateral traits is often used to assess an individual'squality and stress resistance, but stress-induced variationin developmental stability is largely undocumented for free-livingpopulations. Over many years, grizzly bears (Ursus arctos horribilis)extensively foraged around garbage dumps in Yellowstone NationalPark. Abrupt closure of these dumps 26 years ago was a severelystressful event and was followed by excessive mortality anda many-fold increase in grizzly home-range size. I examine howthis stress affected developmental stability by comparing dentitionof bears born before and after the dump closure. I predictedthat (1) asymmetry in dentition should be greater in bears bornafter dump closure compared to before closure, and asymmetryin sexually selected canines should change more than nonsexuallyselected premolars following dump closure and (2) the relationshipbetween tooth asymmetry and tooth size should change in thepopulations following the stressful events as compared withpopulations before stressful events. I found that developmentalstability of canines, which are under directional sexual selectionin males, was more responsive to stress compared to that ofmale premolars or female dentition (both under stabilizing selection),and, because of the increased cost of canine production, feweranimals were able to achieve both large size and symmetricaldevelopment of these teeth, and thus the slope of the relationshipbetween fluctuating asymmetry and canine size increased. I concludethat stress appears to act as an honesty-reinforcement mechanismin sexual selection for symmetrical dentition.  相似文献   

10.
11.
When abundant, seeds of the high‐elevation whitebark pine (WBP; Pinus albicaulis) are an important fall food for grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem. Rates of bear mortality and bear/human conflicts have been inversely associated with WBP productivity. Recently, mountain pine beetles (Dendroctonus ponderosae) have killed many cone‐producing WBP trees. We used fall (15 August–30 September) Global Positioning System locations from 89 bear years to investigate temporal changes in habitat use and movements during 2000–2011. We calculated Manly–Chesson (MC) indices for selectivity of WBP habitat and secure habitat (≥500 m from roads and human developments), determined dates of WBP use, and documented net daily movement distances and activity radii. To evaluate temporal trends, we used regression, model selection, and candidate model sets consisting of annual WBP production, sex, and year. One‐third of sampled grizzly bears had fall ranges with little or no mapped WBP habitat. Most other bears (72%) had a MC index above 0.5, indicating selection for WBP habitats. From 2000 to 2011, mean MC index decreased and median date of WBP use shifted about 1 week later. We detected no trends in movement indices over time. Outside of national parks, there was no correlation between the MC indices for WBP habitat and secure habitat, and most bears (78%) selected for secure habitat. Nonetheless, mean MC index for secure habitat decreased over the study period during years of good WBP productivity. The wide diet breadth and foraging plasticity of grizzly bears likely allowed them to adjust to declining WBP. Bears reduced use of WBP stands without increasing movement rates, suggesting they obtained alternative fall foods within their local surroundings. However, the reduction in mortality risk historically associated with use of secure, high‐elevation WBP habitat may be diminishing for bears residing in multiple‐use areas.  相似文献   

12.
13.
Diet quality during development can impact growth, physiology, behaviour and survival. The Canada jay is a resident boreal passerine that caches a wide variety of perishable food items in late summer and autumn for its over‐winter survival and late‐winter reproduction. A previous experiment found evidence that food supplementation of Canada jay pairs during the nestling period had a positive effect on the condition of their nestlings. However, given that foods cached by adults vary widely in nutritional content, the composition of nestling diets could also have an important influence on offspring development. In a population of Canada jays in Algonquin Provincial Park, Ontario, Canada, we investigated the influence of environmental conditions before and during the breeding season on nestling diet composition and the consequences of nestling diet composition on the body condition of nestlings and on their subsequent survival. Using stable‐carbon (δ13C) and ‐nitrogen (δ15N) isotopes, we estimated the proportion of three food groups (vertebrates + human food, invertebrates and plants) in feathers from almost 200 nestlings. Nestling diet in March and April was influenced by environmental conditions 5–6 months prior to hatching, with warmer and more variable autumn temperatures associated with a greater proportion of vertebrate flesh and human food in the diet. However, the proportion of vertebrates and human food in the diet had no influence on nestling body condition or whether an individual was observed the following fall. Our results, in conjunction with previous work on Canada jays, suggest that the quantity of food available to a nestling during development may be more important than diet composition.  相似文献   

14.
15.
American black bears are considered dependent on high‐elevation forests or other montane habitats in the drylands of western North America. Black bear sign, including that of cubs, was observed throughout the summers of 2015, 2016, and 2018 along a perennial desert river in the Sonoran Desert of Arizona. We analyzed the contents of 21 black bear scats, collected from May to October of 2016 and 2018. Apache cicada nymphs (Diceroprocta apache) were the dominant food item, occurring in 90% of scats and comprising an average of 59% of scat contents. In the process of excavating these nymphs, bears created large areas of turned‐over soil, a form of ecosystem engineering with potential implications for soils, vegetation, and fluvial geomorphology. Given that species distributions are shaped by physiological and ecological contexts, as well as anthropogenic legacies, it is possible that black bears once occurred more commonly in desert riparian systems prior to widespread agricultural development, hunting, and dewatering. Although more research is necessary, we suggest that desert riparian systems may be an alternative habitat for black bears. Better understanding the diet and habitat breadth of American black bears is important in the context of increasing landscape fragmentation and militarization in the U.S.‐Mexican borderlands.  相似文献   

16.
17.
Culture is widely accepted as an important social factor present across a wide range of species. Bears have a culture as defined as behavioral traditions inherited through social learning usually from mothers to offspring. Successful bear cultures can enhance fitness and resource exploitation benefits. In contrast, some bear cultures related to response to humans and human‐related foods can be maladaptive and result in reduced fitness and direct mortality. In environments with minimal human influence most bear culture has evolved over generations to be beneficial and well adapted to enhance fitness. However, most bears across the world do not live in areas with minimal human influence and in these areas, bear culture is often changed by bear interactions with humans, usually to the detriment of bear survival. We highlight the importance of identifying unique bear cultural traits that allow efficient use of local resources and the value of careful management to preserve these adaptive cultural behaviors. It is also important to select against maladaptive cultural behaviors that are usually related to humans in order to reduce human–bear conflicts and high bear mortality. We use examples from Yellowstone National Park to demonstrate how long‐term management to reduce maladaptive bear cultures related to humans has resulted in healthy bear populations and a low level of human–bear conflict in spite of a high number of Yellowstone National Park visitors in close association with bears.  相似文献   

18.
19.
Understanding the density-dependent processes that drive population demography in a changing world is critical in ecology, yet measuring performance–density relationships in long-lived mammalian species demands long-term data, limiting scientists' ability to observe such mechanisms. We tested performance–density relationships for an opportunistic omnivore, grizzly bears (Ursus arctos, Linnaeus, 1758) in the Greater Yellowstone Ecosystem, with estimates of body composition (lean body mass and percent body fat) serving as indicators of individual performance over two decades (2000–2020) during which time pronounced environmental changes have occurred. Several high-calorie foods for grizzly bears have mostly declined in recent decades (e.g., whitebark pine [Pinus albicaulis, Engelm, 1863]), while increasing human impacts from recreation, development, and long-term shifts in temperatures and precipitation are altering the ecosystem. We hypothesized that individual lean body mass declines as population density increases (H1), and that this effect would be more pronounced among growing individuals (H2). We also hypothesized that omnivory helps grizzly bears buffer energy intake from changing foods, with body fat levels being independent from population density and environmental changes (H3). Our analyses showed that individual lean body mass was negatively related to population density, particularly among growing-age females, supporting H1 and partially H2. In contrast, population density or sex had little effect on body fat levels and rate of accumulation, indicating that sufficient food resources were available on the landscape to accommodate successful use of shifting food sources, supporting H3. Our results offer important insights into ecological feedback mechanisms driving individual performances within a population undergoing demographic and ecosystem-level changes. However, synergistic effects of continued climate change and increased human impacts could lead to more extreme changes in food availability and affect observed population resilience mechanisms. Our findings underscore the importance of long-term studies in protected areas when investigating complex ecological relationships in an increasingly anthropogenic world.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号