首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
In this study the interaction mechanism between newly synthesized 4‐(3‐acetyl‐5‐(acetylamino)‐2‐methyl‐2, 3‐dihydro‐1,3,4‐thiadiazole‐2‐yl) phenyl benzoate (thiadiazole derivative) anticancer active drug with calf thymus DNA was investigated by using various optical spectroscopy techniques along with computational technique. The absorption spectrum shows a clear shift in the lower wavelength region, which may be due to strong hypochromic effect in the ctDNA and the drug. The results of steady state fluorescence spectroscopy show that there is static quenching occurring while increasing the thiadiazole drug concentration in the ethidium bromide‐ctDNA system. Also the binding constant (K), thermo dynamical parameters of enthalpy change (ΔH°), entropy change (ΔS°) Gibbs free energy change (ΔG°) were calculated at different temperature (293 K, 298 K) and the results are in good agreement with theoretically calculated MMGBSA binding analysis. Time resolved emission spectroscopy analysis clearly explains the thiadiazole derivative competitive intercalation in the ethidium bromide‐ctDNA system. Further, molecular docking studies was carried out to understand the hydrogen bonding and hydrophobic interaction between ctDNA and thiadiazole derivative molecule. In addition the docking and molecular dynamics charge distribution analysis was done to understand the internal stability of thiadiazole derivative drug binding sites of ctDNA. The global reactivity of thiadiazole derivative such as electronegativity, electrophilicity and chemical hardness has been calculated.  相似文献   

3.
The local dynamics of a double‐stranded DNA d(TpCpGpCpG)2 is obtained to second order in the mode‐coupling expansion of the Smoluchowski diffusion theory. The time correlation functions of bond variables are derived and the 13C‐nmr spin–lattice relaxation times T1 of different 13C along the chains are calculated and compared to experimental data from the literature at three frequencies. The DNA is considered as a fluctuating three‐dimensional structure undergoing rotational diffusion. The fluctuations are evaluated using molecular dynamics simulations, with the ensemble averages approximated by time averages along a trajectory of length 1 ns. Any technique for sampling the configurational space can be used as an alternative. For a fluctuating three‐dimensional (3D) structure using the three first‐order vector modes of lower rates, higher order basis sets of second‐rank tensor are built to give the required mode coupling dynamics. Second‐ and even first‐order theories are found to be in close agreement with the experimental results, especially at high frequency, where the differences in T1 for 13C in the base pairs, sugar, and backbone are well described. These atomistic calculations are of general application for studying, on a molecular basis, the local dynamics of fluctuating 3D structures such as double‐helix DNA fragments, proteins, and protein–DNA complexes. © 1999 John Wiley & Sons, Inc. Biopoly 50: 613–629, 1999  相似文献   

4.
Despite years of study, the structural or dynamical basis for the differential reactivity and oncogenicity of Ras isoforms and mutants remains unclear. In this study, we investigated the effects of amino acid variations on the structure and dynamics of wild type and oncogenic mutants G12D, G12V, and G13D of H‐ and K‐Ras proteins. Based on data from µs‐scale molecular dynamics simulations, we show that the overall structure of the proteins remains similar but there are important differences in dynamics and interaction networks. We identified differences in residue interaction patterns around the canonical switch and distal loop regions, and persistent sodium ion binding near the GTP particularly in the G13D mutants. Our results also suggest that different Ras variants have distinct local structural features and interactions with the GTP, variations that have the potential to affect GTP release and hydrolysis. Furthermore, we found that H‐Ras proteins and particularly the G12V and G13D variants are significantly more flexible than their K‐Ras counterparts. Finally, while most of the simulated proteins sampled the effector‐interacting state 2 conformational state, G12V and G13D H‐Ras adopted an open switch state 1 conformation that is defective in effector interaction. These differences have implications for Ras GTPase activity, effector or exchange factor binding, dimerization and membrane interaction. Proteins 2017; 85:1618–1632. © 2017 Wiley Periodicals, Inc.  相似文献   

5.
This work is the first in a series devoted to applying mode coupling diffusion theory to the derivation of local dynamics properties of proteins in solution. The first‐order mode‐coupling approximation, or optimized Rouse–Zimm local dynamics (ORZLD), is applied here to derive the rotational dynamics of the bonds and compare the calculated with the experimental nmr 15N spin–lattice relaxation time behavior of the vnd/NK‐2 homeodomain from Drosophila melanogaster. The starting point for the calculations is the experimental three‐dimensional structure of the homeodomain determined by multidimensional nmr spectroscopy. The results of the computations are compared with experimentally measured 15N spin–lattice relaxation times T1, at 34.5 and 60.8 MHz, to check the first‐order approximation. To estimate the relative importance of internal and overall rotation, both rigid and fluctuating dynamic models are examined, with fluctuations evaluated using molecular dynamics (MD) simulations. The correlation times for the fundamental bond vector time correlation function and for the second‐order bond orientational TCF are obtained as a function of the residue number for vnd/NK‐2. The stability of the corresponding local dynamics pattern for the fluctuating structure as a function of the length of the MD trajectory is presented. Diffusive dynamics, which is essentially free of model parameters even at first order in the mode‐coupling diffusion approach, confirm that local dynamics of proteins can be described in terms of rotational diffusion of a fluctuating quasi‐rigid structure. The comparison with the nmr data shows that the first‐order mode coupling diffusion approximation accounts for the correct order of magnitude of the results and of important qualitative aspects of the data sensitive to conformational changes. Indications are obtained from this study to efficiently extend the theory to higher order in the mode‐coupling expansion. These results demonstrate the promise of the mode‐coupling approach, where the local dynamics of proteins is described in terms of rotational diffusion of a fluctuating quasi‐rigid structure, to analyze nmr spin–lattice relaxation behavior. © 1999 John Wiley & Sons, Inc. Biopoly 49: 235–254, 1999  相似文献   

6.
Beta‐secretase 1 (BACE‐1) is an aspartyl protease implicated in the overproduction of β‐amyloid fibrils responsible for Alzheimer disease. The process of β‐amyloid genesis is known to be pH dependent, with an activity peak between solution pH of 3.5 and 5.5. We have studied the pH‐dependent dynamics of BACE‐1 to better understand the pH dependent mechanism. We have implemented support for graphics processor unit (GPU) accelerated constant pH molecular dynamics within the AMBER molecular dynamics software package and employed this to determine the relative population of different aspartyl dyad protonation states in the pH range of greatest β‐amyloid production, followed by conventional molecular dynamics to explore the differences among the various aspartyl dyad protonation states. We observed a difference in dynamics between double‐protonated, mono‐protonated, and double‐deprotonated states over the known pH range of higher activity. These differences include Tyr 71‐aspartyl dyad proximity and active water lifetime. This work indicates that Tyr 71 stabilizes catalytic water in the aspartyl dyad active site, enabling BACE‐1 activity.  相似文献   

7.
RAS subfamily proteins regulates cell growth promoting signaling processes by cycling between active (GTP‐bound) and inactive (GDP‐bound) states. Different RAS isoforms, though structurally similar, exhibit functional specificity and are associated with different types of cancers and developmental disorders. Understanding the dynamical differences between the isoforms is crucial for the design of inhibitors that can selectively target a particular malfunctioning isoform. In this study, we provide a comprehensive comparison of the dynamics of all the three RAS isoforms (HRAS, KRAS, and NRAS) using extensive molecular dynamics simulations in both the GDP‐ (total of 3.06 μs) and GTP‐bound (total of 2.4 μs) states. We observed significant differences in the dynamics of the isoforms, which rather interestingly, varied depending on the type of the nucleotide bound and the simulation temperature. Both SwitchI (Residues 25–40) and SwitchII (Residues 59–75) differ significantly in their flexibility in the three isoforms. Furthermore, Principal Component Analysis showed that there are differences in the conformational space sampled by the GTP‐bound RAS isoforms. We also identified a previously unreported pocket, which opens transiently during MD simulations, and can be targeted to regulate nucleotide exchange reaction or possibly interfere with membrane localization. Further, we present the first simulation study showing GDP destabilization in the wild‐type RAS protein. The destabilization of GDP/GTP occurred only in 1/50 simulations, emphasizing the need of guanine nucleotide exchange factors (GEFs) to accelerate such an extremely unfavorable process. This observation along with the other results presented in this article further support our previously hypothesized mechanism of GEF‐assisted nucleotide exchange. Proteins 2015; 83:1091–1106. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
9.
10.
Populations of large herbivores are generally considered to be food limited, escaping the regulatory effects of predation through their large body size, migratory behaviour and/or the occurrence of alternate prey species. In the Australian arid and semi‐arid zones, the availability of forage biomass is considered to be the primary driver of fluctuations in kangaroo abundance. However, little is known about the population dynamics of the smaller sympatric macropods. We examined the demographic traits of a large colony of yellow‐footed rock‐wallabies (Petrogale xanthopus celeris), following a 2‐year period of above average rainfall. The population was located within a conservation reserve that was subject to a predator control program around its perimeter and on neighbouring properties. The low predator abundance provided an opportunity to gauge the strength of bottom‐up population processes. During the two years of the study, the population declined in size by 53%, resulting from both the virtual absence of juvenile recruitment and the loss of adult wallabies. Although reproductive output was high, low pouch young and juvenile survival rates resulted in few individuals progressing into the adult population. With minimal recruitment, the rate of population decline (r = 0.77) matched the observed adult survival rate (Φ = 0.76). Despite average rainfall conditions during the study, survival rates across all age‐classes were equivalent to those reported for other rock‐wallaby populations during periods of scarcity. The reduced survival rates were attributed to low levels of forage resources, particularly around the wallabies' refuge sites, suggesting the bottom‐up regulation of the colony at high densities. The data suggest that the colony was at temporarily high abundance, following a rainfall driven pulse of recruitment. Conservation management actions for this species should focus on increasing juvenile survival rates within declining populations, through the control of feral goats (Capra hircus), rabbits (Oryctolagus cuniculus) and red foxes (Vulpes vulpes).  相似文献   

11.
What determines the stability of communities under environmental fluctuations remains one of the most debated questions in ecology. Scholars generally agree that the similarity in year‐to‐year fluctuations between species is an important determinant of this stability. Concordant fluctuations in species abundances through time (synchrony) decrease stability while discordance in fluctuations (anti‐synchrony) should stabilize communities. Researchers have interpreted the community‐wide degree of synchrony in temporal fluctuations as the outcome of different processes. However, existing synchrony measures depend not only on year‐to‐year species fluctuations, but also on long‐term directional trends in species composition, for example due to land‐use or climate change. The neglected effect of directional trends in species composition could cause an apparent increase in synchrony that is not due to year‐to‐year fluctuations, as species that simultaneously increase (or decrease) in abundance over time will appear correlated, even if they fluctuate discordantly from year to year. The opposite pattern is also conceivable, where different species show contrasting trends in their abundances, thus overestimating year‐to‐year anti‐synchrony. Therefore, trends in species composition may limit our understanding of potential ecological mechanisms behind synchrony between species. We propose two easily implementable solutions, with corresponding R functions, for testing and accounting for the effect of trends in species composition on overall synchrony. The first approach is based on computing synchrony over the residuals of fitted species trends over time. The second approach, applicable to already existing indices, is based on three‐terms local variance, i.e. computing variance over three‐years‐long, movable windows. We demonstrate these methods using simulations and data from real plant communities under long‐term directional changes, discussing when one approach can be preferred. We show that accounting for long‐term temporal trends is necessary and that separation of effect of trends and year‐to‐year fluctuation provides a better understanding of ecological mechanisms and their connections with ecological theory.  相似文献   

12.
Breast Cancer (BCa) is the most often diagnosed cancer among women who were in the late 1940’s. Breast cancer growth is largely dependent on the expression of estrogen and progesterone receptor. Breast cancer cells may have one, both, or none of these receptors. The treatment for breast cancer may involve surgery, hormonal therapy (Tamoxifen, an aromatase inhibitor, etc.) and oral chemotherapeutic drugs. The molecular docking technique reported the findings on the potential binding modes of the 2‐(2‐bromo‐3‐nitrophenyl)‐5‐phenyl‐1,3,4‐oxadiazole derivatives with the estrogen receptor (PDB ID: 3ERT). The 1,3,4‐oxadiazole derivatives 4a – 4j have been synthesized and described by spectroscopic method. 2‐(2‐Bromo‐6‐nitrophenyl)‐5‐(4‐bromophenyl)‐1,3,4‐oxadiazole ( 4c ) was reconfirmed by single‐crystal XRD. All the compounds have been tested in combination with generic Imatinib pharmaceutical drug against breast cancer cell lines isolated from Caucasian woman MCF‐7, MDA‐MB‐453 and MCF‐10A non‐cancer cell lines. The compounds with the methoxy (in 4c ) and methyl (in 4j ) substitution were shown to have significant cytotoxicity, with 4c showing dose‐dependent activation and decreased cell viability. The mechanism of action was reported by induced apoptosis and tested by a DNA enzyme inhibitor experiment (ELISA) for Methyl Transferase. Molecular dynamics simulations were made for hit molecule 4c to study the stability and interaction of the protein?ligand complex. The toxicity properties of ADME were calculated for all the compounds. All these results provide essential information for further clinical trials.  相似文献   

13.
Earlier studies have shown that the helical content of α‐helical peptide decreases upon its interaction with carbon nanotube (CNT). Further, the length of the α‐helix varies from few residues in the small globular protein to several number of residues in structural and membrane proteins. In structural and membrane proteins, helices are widely present as the supercoil i.e., helical bundles. Thus, in this study, the length‐dependent interaction pattern of α‐helical peptides with CNT and the stability of isolated α‐helical fragment versus supercoiled helical bundle upon interaction with CNT have been investigated using classical molecular dynamics (MD) simulation. Results reveal that the disruption in the helical motif on interaction with CNT is directly proportional to the length of the helix. Also it is found that the shorter helix does not undergo noticeable changes in the helicity upon adsorption with CNT. On the other hand, helicity of longer peptides is considerably affected by its interaction with CNT. In contrast to the known fact that the stability of the helix increases with its length, the disruption in the helical peptide increases with its length upon its interaction with CNT. Comparison of results shows that structural changes in the isolated helical fragment are higher than that in supercoiled helix. In fact, helical chain in supercoiled bundle does not undergo significant changes in the helicity upon interaction with CNT. Both the length of the helical peptide and the inherent stability of the helical unit in the supercoiled helix influence the interaction pattern with the CNT. © 2012 Wiley Periodicals, Inc. Biopolymers 99: 357–369, 2013.  相似文献   

14.
15.
Lymphocyte function‐associated antigen‐1 (LFA‐1) is an integrin protein that transmits information across the plasma membrane through the so‐called inside‐out and outside‐in signaling mechanisms. To investigate these mechanisms, we carried out an NMR analysis of the dynamics of the LFA‐1 I‐domain, which has enabled us to characterize the motions of this domain on a broad range of timescales. We studied first the internal motions on the nanosecond timescale by spin relaxation measurements and model‐free analysis. We then extended this analysis to the millisecond timescale motions by measuring 15N‐1H residual dipolar couplings of the backbone amide groups. We analyzed these results in the context of the three major conformational states of the I‐domain using their corresponding X‐ray crystallographic structures. Our results highlight the importance of the low‐frequency motions of the LFA‐1 I‐domain in the inactive apo‐state. We found in particular that α‐helix 7 is in a position in the apo‐closed state that cannot be fully described by any of the existing X‐ray structures, as it appears to be in dynamic exchange between different conformations. This type of motion seems to represent an inherent property of the LFA‐1 I‐domain and might be relevant for controlling the access to the allosteric binding pocket, as well as for the downward displacement of α‐helix 7 that is required for the activation of LFA‐1.  相似文献   

16.
17.
18.
Tick vector systems are comprised of complex climate‐tick‐host‐landscape interactions that are difficult to identify and estimate from empirical observations alone. We developed a spatially‐explicit, individual‐based model, parameterized to represent ecological conditions typical of the south‐central United States, to examine effects of shifts in the seasonal occurrence of fluctuations of host densities on tick densities. Simulated shifts in the seasonal occurrence of periods of high and low host densities affected both the magnitude of unfed tick densities and the seasonality of tick development. When shifting the seasonal densities of all size classes of hosts (small, medium, and large) synchronously, densities of nymphs were affected more by smaller shifts away from the baseline host seasonality than were densities of larval and adult life stages. When shifting the seasonal densities of only a single size‐class of hosts while holding other size classes at their baseline levels, densities of larval, nymph, and adult life stages responded differently. Shifting seasonal densities of any single host‐class earlier resulted in a greater increase in adult tick density than when seasonal densities of all host classes were shifted earlier simultaneously. The mean densities of tick life stages associated with shifts in host densities resulted from system‐level interactions of host availability with tick phenology. For example, shifting the seasonality of all hosts ten weeks earlier resulted in an approximately 30% increase in the relative degree of temporal co‐occurrence of actively host‐seeking ticks and hosts compared to baseline, whereas shifting the seasonality of all hosts ten weeks later resulted in an approximately 70% decrease compared to baseline. Differences among scenarios in the overall presence of active host‐seeking ticks in the system were due primarily to the degree of co‐occurrence of periods of high densities of unfed ticks and periods of high densities of hosts.  相似文献   

19.
Delta‐opioid (DOP) receptors are members of the G protein‐coupled receptor (GPCR) sub‐family of opioid receptors, and are evolutionarily related, with homology exceeding 70%, to cognate mu‐opioid (MOP), kappa‐opioid (KOP), and nociceptin opioid (NOP) receptors. DOP receptors are considered attractive drug targets for pain management because agonists at these receptors are reported to exhibit strong antinociceptive activity with relatively few side effects. Among the most potent analgesics targeting the DOP receptor are the linear and cyclic enkephalin analogs known as DADLE (Tyr‐D ‐Ala‐Gly‐Phe‐D ‐Leu) and DPDPE (Tyr‐D ‐Pen‐Gly‐Phe‐D ‐Pen), respectively. Several computational and experimental studies have been carried out over the years to characterize the conformational profile of these penta‐peptides with the ultimate goal of designing potent peptidomimetic agonists for the DOP receptor. The computational studies published to date, however, have investigated only a limited range of timescales and used over‐simplified representations of the solvent environment. We provide here a thorough exploration of the conformational space of DADLE and DPDPE in an explicit solvent, using microsecond‐scale molecular dynamics and bias‐exchange metadynamics simulations. Free‐energy profiles derived from these simulations point to a small number of DADLE and DPDPE conformational minima in solution, which are separated by relatively small energy barriers. Candidate bioactive forms of these peptides are selected from identified common spatial arrangements of key pharmacophoric points within all sampled conformations. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 21–27, 2014.  相似文献   

20.
Biologists are still discovering diverse and powerful ways sexual conflicts shape biodiversity. The present study examines how the proportion of females in a population that exhibit male mimicry, a mating resistance trait, influences conspecific males’ behavior, condition, and survival. Like most female‐polymorphic damselflies, Ischnura ramburii harbors both “andromorph” females, which closely resemble males, and sexually dimorphic “gynomorph” counterparts. There is evidence that male mimicry helps andromorphs evade detection and harassment, but males can also learn to target locally prevalent morph(s) via prior mate encounters. I hypothesized that the presence of male mimics could therefore predispose males to mate recognition errors, and thereby increase rates of costly male‐male interactions. Consistent with this hypothesis, male‐male interaction rates were highest in mesocosms containing more andromorph (vs. gynomorph) females. Males in andromorph‐biased mesocosms also had lower final body mass and higher mortality than males assigned to gynomorph‐majority treatments. Male survival and body mass were each negatively affected by mesocosm density, and mortality data revealed a marginally significant interaction between andromorph frequency and population density. These findings suggest that, under sufficiently crowded conditions, female mating resistance traits such as male mimicry could have pronounced indirect effects on male behavior, condition, and survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号