首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
Vision is a major sense for Primates and the ability to perceive colors has great importance for the species ecology and behavior. Visual processing begins with the activation of the visual opsins in the retina, and the spectral absorption peaks are highly variable among species. In most Primates, LWS/MWS opsins are responsible for sensitivity to long/middle wavelengths within the visible light spectrum, and SWS1 opsins provide sensitivity to short wavelengths, in the violet region of the spectrum. In this study, we aimed to investigate the genetic variation on the sws1 opsin gene of New World monkeys (NWM) and search for amino acid substitutions that might be associated with the different color vision phenotypes described for a few species. We sequenced the exon 1 of the sws1 opsin gene of seven species from the families Callitrichidae, Cebidae, and Atelidae, and searched for variation at the spectral tuning sites 46, 49, 52, 86, 90, 93, 114, 116, and 118. Among the known spectral tuning sites, only residue 114 was variable. To investigate whether other residues have a functional role in the SWS1 absorption peak, we performed computational modeling of wild-type SWS1 and mutants A50I and A50V, found naturally among the species investigated. Although in silico analysis did not show any visible effect caused by these substitutions, it is possible that interactions of residue 50 with other sites might have some effect in the spectral shifts in the order of ~14 nm, found among the NWM. We also performed phylogenetic reconstruction of the sws1 gene, which partially recovered the species phylogeny. Further studies will be important to uncover the mutations responsible for the phenotypic variability of the SWS1 of NWM, and how spectral tuning may be associated with specific ecological features such as preferred food items and habitat use.  相似文献   

2.
There is much debate about how humans' decision-making compares with that of other primates. One way to explore this is to compare species' performance using identical methodologies in games with strategical interactions. We presented a computerized Assurance Game, which was either functionally simultaneous or sequential, to investigate how humans, rhesus monkeys and capuchin monkeys used information in decision-making. All species coordinated via sequential play on the payoff-dominant Nash equilibrium, indicating that information about the partner's choice improved decisions. Furthermore, some humans and rhesus monkeys found the payoff-dominant Nash equilibrium in the simultaneous game, even when it was the first condition presented. Thus, Old World primates solved the task without any external cues to their partner's choice. Finally, when not explicitly prohibited, humans spontaneously used language to coordinate on the payoff-dominant Nash equilibrium, indicating an alternative mechanism for converting a simultaneous move game into a sequential move game. This phylogenetic distribution implies that no single mechanism drives coordination decisions across the primates, while humans' ability to spontaneously use language to change the structure of the game emphasizes that multiple mechanisms may be used even within the same species. These results provide insight into the evolution of decision-making strategies across the primates.  相似文献   

3.
4.
5.
6.
Tarsiers are small nocturnal primates with a long history of fuelling debate on the origin and evolution of anthropoid primates. Recently, the discovery of M and L opsin genes in two sister species, Tarsius bancanus (Bornean tarsier) and Tarsius syrichta (Philippine tarsier), respectively, was interpreted as evidence of an ancestral long-to-middle (L/M) opsin polymorphism, which, in turn, suggested a diurnal or cathemeral (arrhythmic) activity pattern. This view is compatible with the hypothesis that stem tarsiers were diurnal; however, a reversion to nocturnality during the Middle Eocene, as evidenced by hyper-enlarged orbits, predates the divergence of T. bancanus and T. syrichta in the Late Miocene. Taken together, these findings suggest that some nocturnal tarsiers possessed high-acuity trichromatic vision, a concept that challenges prevailing views on the adaptive origins of the anthropoid visual system. It is, therefore, important to explore the plausibility and antiquity of trichromatic vision in the genus Tarsius. Here, we show that Sulawesi tarsiers (Tarsius tarsier), a phylogenetic out-group of Philippine and Bornean tarsiers, have an L opsin gene that is more similar to the L opsin gene of T. syrichta than to the M opsin gene of T. bancanus in non-synonymous nucleotide sequence. This result suggests that an L/M opsin polymorphism is the ancestral character state of crown tarsiers and raises the possibility that many hallmarks of the anthropoid visual system evolved under dim (mesopic) light conditions. This interpretation challenges the persistent nocturnal–diurnal dichotomy that has long informed debate on the origin of anthropoid primates.  相似文献   

7.
Based upon the modeling binding mode of marketed AZD9291 with T790M, a series of N-9-Diphenyl-9H-purin-2-amine derivatives were designed and synthesized with the purpose to overcome the drug resistance resulted from T790M/L858R double mutations. The most potent compound 23a showed excellent enzyme inhibitory activities and selectivity with nanomolar IC50 values for both the single T790M and double T790M/L858R mutant EGFRs, and was more than 8-fold selective for wild type EGFR. Compound 23a displayed strong antiproliferative activity against the H1975 non-small cell lung cancer (NSCLC) cells bearing T790M/L858R. And it was less potent against A549 (WT EGFR and k-Ras mutation) and HT-29 (non-special gene type) cells, showing a high safety index.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号