共查询到20条相似文献,搜索用时 15 毫秒
1.
高寒生态系统分布在高纬度或高海拔、气候寒冷的地区,包括北极苔原、高山苔原、青藏高原等.高寒生态系统对气候变化非常敏感,其土壤中储存大量的有机碳,对全球的碳平衡起关键作用.微生物是生物地球化学循环的主要驱动者,微生物群落对气候变化的响应和反馈影响生态系统的功能与稳定性.本文回顾了高寒生态系统微生物群落组成、多样性与空间分布,以及微生物群落对气候变化(增温、氮沉降、火干扰)的响应,为拓展我国高寒生态系统微生物研究提供基础. 相似文献
2.
Jin-Tao Lí;Lettice C. Hicks;Albert C. Brangarí;Dániel Tájmel;Carla Cruz-Paredes;Johannes Rousk; 《Global Change Biology》2024,30(1):e17040
Climate change is predicted to cause milder winters and thus exacerbate soil freeze–thaw perturbations in the subarctic, recasting the environmental challenges that soil microorganisms need to endure. Historical exposure to environmental stressors can facilitate the microbial resilience to new cycles of that same stress. However, whether and how such microbial memory or stress legacy can modulate microbial responses to cycles of frost remains untested. Here, we conducted an in situ field experiment in a subarctic birch forest, where winter warming resulted in a substantial increase in the number and intensity of freeze–thaw events. After one season of winter warming, which raised mean surface and soil (−8 cm) temperatures by 2.9 and 1.4°C, respectively, we investigated whether the in situ warming-induced increase in frost cycles improved soil microbial resilience to an experimental freeze–thaw perturbation. We found that the resilience of microbial growth was enhanced in the winter warmed soil, which was associated with community differences across treatments. We also found that winter warming enhanced the resilience of bacteria more than fungi. In contrast, the respiration response to freeze–thaw was not affected by a legacy of winter warming. This translated into an enhanced microbial carbon-use efficiency in the winter warming treatments, which could promote the stabilization of soil carbon during such perturbations. Together, these findings highlight the importance of climate history in shaping current and future dynamics of soil microbial functioning to perturbations associated with climate change, with important implications for understanding the potential consequences on microbial-mediated biogeochemical cycles. 相似文献
3.
A. Joy Belsky 《Plant Ecology》1984,55(3):141-151
Small-scale community gradients and patterns in four grassland communities in the Serengeti National Park, Tanzania, were analyzed by detrended correspondence analysis (DCA) and percentage distance ordination (PD). The main goals of the study were (1) to describe the vegetation patterns in the communities, (2) to identify the potential underlying causes of the patterns, and (3) to rank the communities by their relative levels of patchiness. Species cover in a small number (16–32) of discontinuous plots was estimated and soils were collected. DCA successfully identified community gradients and phases of discrete mosaics, and PD identified the relative heterogeneity of the sites. Results suggested that the two most arid sites were composed of weakly or strongly differentiated vegetational mosaics and the two most mesic sites were essentially homogeneous. Termite modification of water infiltration properties of the soils and clonal growth of dominant species were identified as two factors possibly causing the mosaic vegetation patterns. 相似文献
4.
Abstract. Permanently marked vegetation transects in Big Bend National Park, Texas, USA were monitored to follow temporal dynamics of desert grassland communities on a variety of landforms and soil types over a 26-yr period after the removal of domestic livestock. Historic records indicate that the park area was severely overgrazed prior to its establishment, and our results show that the species present increased in both cover and density after the removal of livestock. However, the timing of recovery corresponded to multiyear periods of above-average precipitation. Little change was observed in between 1955 and 1960, a period dominated by several consecutive years of drought. The cover of two large shrubs common to the Chihuahuan Desert, Larrea tridentata and Flourensia cernua, increased from 1960 to 1967, a period dominated by summer drought and frequent wet winters. The cover and density of forbs, perennial grasses, and most shrubs increased on nearly all landforms between 1967 and 1981, when summers were wetter than average. In contrast, the cover of Larrea tridentata decreased during this period. Comparisons among the plant communities on each landform showed that they diverged through time after domestic livestock were removed. Presumably, differences in topographic position and soil texture influence water availability which was reflected in the species composition on each soil series. Unfortunately, we cannot isolate the effects of recovery from grazing from the effects of climate because the study design did not include control plots located within grazed pastures. Certainly, the directional trajectory of change and the regrowth of grasses into inter-shrub spaces, must, at least in part, be the result of recovery from grazing. However, our data also indicate that the desert grassland communities are sensitive to multi-year periods of above- or below-average precipitation. Clearly, the dynamics between shrubs and grasses cannot be explained by a simple successional paradigm that views increased shrub dominance as retrogression from a climax grassland. Many alternate hypotheses have been forwarded to explain the dynamics that control the vegetation composition in the desert and desert grassland region of North America. Experimental tests of these hypotheses are needed to indentify the interactions between biotic and abiotic factors that control dominance by shrubs or grasses. 相似文献
5.
O. Roger Anderson 《The Journal of eukaryotic microbiology》2016,63(3):394-409
Estuaries are among the most productive and economically important marine ecosystems at the land–ocean interface and contribute significantly to exchange of CO2 with the atmosphere. Estuarine microbial communities are major links in the biogeochemical C cycle and flow of C in food webs from primary producers to higher consumers. Considerable attention has been given to bacteria and autotrophic eukaryotes in estuarine ecosystems, but less research has been devoted to the role of heterotrophic eukaryotic microbes. Current research is reviewed here on the role of heterotrophic eukaryotic microbes in C biogeochemistry and ecology of estuaries, with particular attention to C budgets, trophodynamics, and the metabolic fate of C in microbial communities. Some attention is given to the importance of these processes in climate change and global warming, especially in relation to sources and sinks of atmospheric CO2, while also documenting the current paucity of research on the role of eukaryotic microbes that contribute to this larger question of C biogeochemistry and the environment. Some recommendations are made for future directions of research and opportunities of applying newer technologies and analytical approaches to a more refined analysis of the role of C in estuarine microbial community processes and the biogeochemical C cycle. 相似文献
6.
D. A. FORNARA S. STEINBEISS N. P. McNAMARA G. GLEIXNER S. OAKLEY P. R. POULTON A. J. MACDONALD R. D. BARDGETT 《Global Change Biology》2011,17(5):1925-1934
The application of calcium‐ and magnesium‐rich materials to soil, known as liming, has long been a foundation of many agro‐ecosystems worldwide because of its role in counteracting soil acidity. Although liming contributes to increased rates of respiration from soil thereby potentially reducing soils ability to act as a CO2 sink, the long‐term effects of liming on soil organic carbon (Corg) sequestration are largely unknown. Here, using data spanning 129 years of the Park Grass Experiment at Rothamsted (UK), we show net Corg sequestration measured in the 0–23 cm layer at different time intervals since 1876 was 2–20 times greater in limed than in unlimed soils. The main cause of this large Corg accrual was greater biological activity in limed soils, which despite increasing soil respiration rates, led to plant C inputs being processed and incorporated into resistant soil organo‐mineral pools. Limed organo‐mineral soils showed: (1) greater Corg content for similar plant productivity levels (i.e. hay yields); (2) higher 14C incorporation after 1950s atomic bomb testing and (3) lower C : N ratios than unlimed organo‐mineral soils, which also indicate higher microbial processing of plant C. Our results show that greater Corg sequestration in limed soils strongly reduced the global warming potential of long‐term liming to permanent grassland suggesting the net contribution of agricultural liming to global warming could be lower than previously estimated. Our study demonstrates that liming might prove to be an effective mitigation strategy, especially because liming applications can be associated with a reduced use of nitrogen fertilizer which is a key cause for increased greenhouse gas emissions from agro‐ecosystems. 相似文献
7.
L. Bordez P. Jourand M. Ducousso F. Carriconde Y. Cavaloc S. Santini J. M. Claverie L. Wantiez A. Leveau H. Amir 《Molecular ecology》2016,25(10):2258-2272
8.
Contingent productivity responses to more extreme rainfall regimes across a grassland biome 总被引:1,自引:0,他引:1
JANA L. HEISLER-WHITE JOHN M. BLAIR† EUGENE F. KELLY‡ KEITH HARMONEY§ ALAN K. KNAPP¶ 《Global Change Biology》2009,15(12):2894-2904
Climate models predict, and empirical evidence confirms, that more extreme precipitation regimes are occurring in tandem with warmer atmospheric temperatures. These more extreme rainfall patterns are characterized by increased event size separated by longer within season drought periods and represent novel climatic conditions whose consequences for different ecosystem types are largely unknown. Here, we present results from an experiment in which more extreme rainfall patterns were imposed in three native grassland sites in the Central Plains Region of North America, USA. Along this 600 km precipitation–productivity gradient, there was strong sensitivity of temperate grasslands to more extreme growing season rainfall regimes, with responses of aboveground net primary productivity (ANPP) contingent on mean soil water levels for different grassland types. At the mesic end of the gradient (tallgrass prairie), longer dry intervals between events led to extended periods of below-average soil water content, increased plant water stress and reduced ANPP by 18%. The opposite response occurred at the dry end (semiarid steppe), where a shift to fewer, but larger, events increased periods of above-average soil water content, reduced seasonal plant water stress and resulted in a 30% increase in ANPP. At an intermediate mixed grass prairie site with high plant species richness, ANPP was most sensitive to more extreme rainfall regimes (70% increase). These results highlight the inherent complexity in predicting how terrestrial ecosystems will respond to forecast novel climate conditions as well as the difficulties in extending inferences from single site experiments across biomes. Even with no change in annual precipitation amount, ANPP responses in a relatively uniform physiographic region differed in both magnitude and direction in response to within season changes in rainfall event size/frequency. 相似文献
9.
以腾格里沙漠东南缘的典型荒漠植被为研究对象,通过遮雨棚和滴灌系统设置5个降水梯度,即极端干旱处理、中度干旱处理、对照、增水处理I和增水处理II,研究了荒漠土壤微生物量碳(MBC)、氮(MBN)和微生物碳氮比(MBC/MBN)对季节、降水和土壤深度的响应规律,以期为极端降水事件影响干旱荒漠区土壤微生物量碳、氮及其循环规律的深入研究提供科学依据。结果表明:(1)MBC、MBN和MBC/MBN对降水处理的响应存在差异,三者的变化范围为:230.14—272.87 mg/kg,13.82—17.58 mg/kg,19.78—36.06。其中,降水处理对MBC、MBN的影响显著,对MBC/MBN的影响不显著,在极端干旱处理下,MBC、MBN均显著高于其他降水处理;(2)两年间的MBC、MBN和MBC/MBN差异显著,2017年较2016年MBC、MNB显著减少,MBC/MBN显著增加;(3)MBC、MBN和MBC/MBN变化均表现季节性差异,变化范围分别为:153.31—337.09 mg/kg,7.89—22.29 mg/kg,14.82—46.04,其中MBC、MBN为春季最高、秋季最低,M... 相似文献
10.
Laëtitia M. Bréchet Luis Lopez‐Sangil Charles George Ali J. Birkett Catherine Baxendale Biancolini Castro Trujillo Emma J. Sayer 《Ecology and evolution》2018,8(7):3787-3796
Global change is affecting primary productivity in forests worldwide, and this, in turn, will alter long‐term carbon (C) sequestration in wooded ecosystems. On one hand, increased primary productivity, for example, in response to elevated atmospheric carbon dioxide (CO2), can result in greater inputs of organic matter to the soil, which could increase C sequestration belowground. On other hand, many of the interactions between plants and microorganisms that determine soil C dynamics are poorly characterized, and additional inputs of plant material, such as leaf litter, can result in the mineralization of soil organic matter, and the release of soil C as CO2 during so‐called “priming effects”. Until now, very few studies made direct comparison of changes in soil C dynamics in response to altered plant inputs in different wooded ecosystems. We addressed this with a cross‐continental study with litter removal and addition treatments in a temperate woodland (Wytham Woods) and lowland tropical forest (Gigante forest) to compare the consequences of increased litterfall on soil respiration in two distinct wooded ecosystems. Mean soil respiration was almost twice as high at Gigante (5.0 μmol CO2 m?2 s?1) than at Wytham (2.7 μmol CO2 m?2 s?1) but surprisingly, litter manipulation treatments had a greater and more immediate effect on soil respiration at Wytham. We measured a 30% increase in soil respiration in response to litter addition treatments at Wytham, compared to a 10% increase at Gigante. Importantly, despite higher soil respiration rates at Gigante, priming effects were stronger and more consistent at Wytham. Our results suggest that in situ priming effects in wooded ecosystems track seasonality in litterfall and soil respiration but the amount of soil C released by priming is not proportional to rates of soil respiration. Instead, priming effects may be promoted by larger inputs of organic matter combined with slower turnover rates. 相似文献
11.
Vanessa M. Adams Samantha A. Setterfield Michael M. Douglas Mark J. Kennard Keith Ferdinands 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2015,370(1681)
Protected areas remain a cornerstone for global conservation. However, their effectiveness at halting biodiversity decline is not fully understood. Studies of protected area benefits have largely focused on measuring their impact on halting deforestation and have neglected to measure the impacts of protected areas on other threats. Evaluations that measure the impact of protected area management require more complex evaluation designs and datasets. This is the case across realms (terrestrial, freshwater, marine), but measuring the impact of protected area management in freshwater systems may be even more difficult owing to the high level of connectivity and potential for threat propagation within systems (e.g. downstream flow of pollution). We review the potential barriers to conducting impact evaluation for protected area management in freshwater systems. We contrast the barriers identified for freshwater systems to terrestrial systems and discuss potential measurable outcomes and confounders associated with protected area management across the two realms. We identify key research gaps in conducting impact evaluation in freshwater systems that relate to three of their major characteristics: variability, connectivity and time lags in outcomes. Lastly, we use Kakadu National Park world heritage area, the largest national park in Australia, as a case study to illustrate the challenges of measuring impacts of protected area management programmes for environmental outcomes in freshwater systems. 相似文献
12.
该研究以宁夏盐池县沙边子地区4种常见的植物群落苦豆子(Sophora alopecuroides)、芨芨草(Achnatherum splendens)、油蒿(Artermisia ordosica)和盐爪爪(Kalidium foliatum)为研究对象,通过对群落组成和土壤基本理化性质的研究,以及对脲酶、过氧化氢酶、磷酸酶、蔗糖酶4种常见土壤酶活性的检测,分析了荒漠草原不同植物群落的土壤微环境。结果表明:(1)不同植物群落物种组成不同,且在研究区禾本科、菊科、藜科植物出现的频率相对较高。(2)不同植物群落土壤理化性质存在差异。苦豆子群落土壤容重较低,土壤全氮含量相对较高;芨芨草群落土壤pH明显较高,土壤有机碳含量相对较高;油蒿群落土壤水分含量较低,土壤全磷含量较低;盐爪爪群落土壤盐分含量显著高于其它植物群落。(3)不同植物群落土壤酶活性存在差异,其中芨芨草和油蒿群落的表层土(0~10cm)的土壤脲酶活性较高;油蒿和盐爪爪群落的土壤过氧化氢酶随着土层加深酶活性反而有升高趋势;苦豆子和芨芨草群落的土壤磷酸酶活性较高,盐爪爪群落各土层间磷酸酶活性无显著差异;4种群落土壤蔗糖酶活性普遍较低,且各土层间差异也不大。(4)不同植物群落的同种土壤酶活性间相关性不同。研究认为,根据不同植物群落特征及土壤特性,尤其是不同植物群落间土壤酶活性的相关性,可预测荒漠草原地区植物群落演替趋势,通过适度的人为调控,可使群落向进展方向演替。 相似文献
13.
当前人类活动的加剧显著地影响着全球大气循环的格局。大气循环的多个模型均预测未来全球气候变化的显著特征是极端降水事件和极端干旱事件发生的频率会显著增加。水分是干旱、半干旱区草原植物生长发育的限制性资源, 而草原生态系统是陆地生态系统中对降水格局变化非常敏感的系统。但是, 关于极端降水事件和极端干旱事件对草原生态系统结构和功能的影响还是以分散的个案研究为主, 甚至关于极端气候事件的定义迄今也不尽相同。为此, 该文在分析极端气候事件定义及其研究方法的基础上, 总结了极端降水事件和极端干旱事件对草原生态系统土壤水分和养分状况、植物生长发育和生理特性、群落结构、生产力和碳循环过程的影响, 并提出了未来极端气候事件研究中应重点关注的5个重要方向, 以及控制试验研究的2个关键科学问题, 对开展全球变化背景下草原生态系统对极端气候事件响应机制的研究具有指导意义。 相似文献
14.
Matthew D. Petrie Debra P. C. Peters N. Dylan Burruss Wenjie Ji Heather M. Savoy 《Global Change Biology》2019,25(10):3305-3318
Dryland vegetation is influenced by biotic and abiotic land surface template (LST) conditions and precipitation (PPT), such that enhanced vegetation responses to periods of high PPT may be shaped by multiple factors. High PPT stochasticity in the Chihuahuan Desert suggests that enhanced responses across broad geographic areas are improbable. Yet, multiyear wet periods may homogenize PPT patterns, interact with favorable LST conditions, and in this way produce enhanced responses. In contrast, periods containing multiple extreme high PPT pulse events could overwhelm LST influences, suggesting a divergence in how climate change could influence vegetation by altering PPT periods. Using a suite of stacked remote sensing and LST datasets from the 1980s to the present, we evaluated PPT‐LST‐Vegetation relationships across this region and tested the hypothesis that enhanced vegetation responses would be initiated by high PPT, but that LST favorability would underlie response magnitude, producing geographic differences between wet periods. We focused on two multiyear wet periods; one of above average, regionally distributed PPT (1990–1993) and a second with locally distributed PPT that contained two extreme wet pulses (2006–2008). 1990–1993 had regional vegetation responses that were correlated with soil properties. 2006–2008 had higher vegetation responses over a smaller area that were correlated primarily with PPT and secondarily to soil properties. Within the overlapping PPT area of both periods, enhanced vegetation responses occurred in similar locations. Thus, LST favorability underlied the geographic pattern of vegetation responses, whereas PPT initiated the response and controlled response area and maximum response magnitude. Multiyear periods provide foresight on the differing impacts that directional changes in mean climate and changes in extreme PPT pulses could have in drylands. Our study shows that future vegetation responses during wet periods will be tied to LST favorability, yet will be shaped by the pattern and magnitude of multiyear PPT events. 相似文献
15.
Aim The exotic annual cheatgrass (Bromus tectorum) is fast replacing sagebrush (Artemisia tridentata) communities throughout the Great Basin Desert and nearby regions in the Western United States, impacting native plant communities and altering fire regimes, which contributes to the long‐term persistence of this weedy species. The effect of this conversion on native faunal communities remains largely unexamined. We assess the impact of conversion from native perennial to exotic annual plant communities on desert rodent communities. Location Wyoming big sagebrush shrublands and nearby sites previously converted to cheatgrass‐dominated annual grasslands in the Great Basin Desert, Utah, USA. Methods At two sites in Tooele County, Utah, USA, we investigated with Sherman live trapping whether intact sagebrush vegetation and nearby converted Bromus tectorum‐dominated vegetation differed in rodent abundance, diversity and community composition. Results Rodent abundance and species richness were considerably greater in sagebrush plots than in cheatgrass‐dominated plots. Nine species were captured in sagebrush plots; five of these were also trapped in cheatgrass plots, all at lower abundances than in the sagebrush. In contrast, cheatgrass‐dominated plots had no species that were not found in sagebrush. In addition, the site that had been converted to cheatgrass longer had lower abundances of rodents than the site more recently converted to cheatgrass‐dominated plots. Despite large differences in abundances and species richness, Simpson’s D diversity and Shannon‐Wiener diversity and Brillouin evenness indices did not differ between sagebrush and cheatgrass‐dominated plots. Main conclusions This survey of rodent communities in native sagebrush and in converted cheatgrass‐dominated vegetation suggests that the abundances and community composition of rodents may be shifting, potentially at the larger spatial scale of the entire Great Basin, where cheatgrass continues to invade and dominate more landscape at a rapid rate. 相似文献
16.
Lisa M. Stout Ruth E. Blake James P. Greenwood Anna M. Martini & Eben C. Rose 《FEMS microbiology ecology》2009,70(3):70-80
The volcanic Sulphur Springs, St. Lucia, present an extreme environment due to high temperatures, low pH values, and high concentrations of sulfate and boron. St. Lucia offers some unique geochemical characteristics that may shape the microbial communities within the Sulphur Springs area. We chose six pools representing a range of geochemical characteristics for detailed microbial community analyses. Chemical concentrations varied greatly between sites. Microbial diversity was analyzed using 16S rRNA gene clone library analyses. With the exception of one pool with relatively low concentrations of dissolved ions, microbial diversity was very low, with Aquificales sequences dominating bacterial communities at most pools. The archaeal component of all pools was almost exclusively Acidianus spp. and did not vary between sites with different chemical characteristics. In the pool with the highest boron and sulfate concentrations, only archaeal sequences were detected. Compared with other sulfur springs such as those at Yellowstone, the microbial diversity at St. Lucia is very different, but it is similar to that at the nearby Lesser Antilles island of Montserrat. While high elemental concentrations seem to be related to differences in bacterial diversity here, similarities with other Lesser Antilles sites suggest that there may be a biogeographical component as well. 相似文献
17.
Increased rainfall variability and reduced rainfall amount decreases soil CO2 flux in a grassland ecosystem 总被引:2,自引:0,他引:2
Christopher W. Harper John M. Blair Philip A. Fay† Alan K. Knapp Jonathan D. Carlisle 《Global Change Biology》2005,11(2):322-334
Predicted climate changes in the US Central Plains include altered precipitation regimes with increased occurrence of growing season droughts and higher frequencies of extreme rainfall events. Changes in the amounts and timing of rainfall events will likely affect ecosystem processes, including those that control C cycling and storage. Soil carbon dioxide (CO2) flux is an important component of C cycling in terrestrial ecosystems, and is strongly influenced by climate. While many studies have assessed the influence of soil water content on soil CO2 flux, few have included experimental manipulation of rainfall amounts in intact ecosystems, and we know of no studies that have explicitly addressed the influence of the timing of rainfall events. In order to determine the responses of soil CO2 flux to altered rainfall timing and amounts, we manipulated rainfall inputs to plots of native tallgrass prairie (Konza Prairie, Kansas, USA) over four growing seasons (1998–2001). Specifically, we altered the amounts and/or timing of growing season rainfall in a factorial combination that included two levels of rainfall amount (100% or 70% of naturally occurring rainfall quantity) and two temporal patterns of rain events (ambient timing or a 50% increase in length of dry intervals between events). The size of individual rain events in the altered timing treatment was adjusted so that the quantity of total growing season rainfall in the ambient and altered timing treatments was the same (i.e. fewer, but larger rainfall events characterized the altered timing treatment). Seasonal mean soil CO2 flux decreased by 8% under reduced rainfall amounts, by 13% under altered rainfall timing, and by 20% when both were combined (P<0.01). These changes in soil CO2 flux were consistent with observed changes in plant productivity, which was also reduced by both reduced rainfall quantity and altered rainfall timing. Soil CO2 flux was related to both soil temperature and soil water content in regression analyses; together they explained as much as 64% of the variability in CO2 flux across dates under ambient rainfall timing, but only 38–48% of the variability under altered rainfall timing, suggesting that other factors (e.g. substrate availability, plant or microbial stress) may limit CO2 flux under a climate regime that includes fewer, larger rainfall events. An analysis of the temperature sensitivity of soil CO2 flux indicated that temperature had a reduced effect (lower correlation and lower Q10 values) under the reduced quantity and altered timing treatments. Recognition that changes in the timing of rainfall events may be as, or more, important than changes in rainfall amount in affecting soil CO2 flux and other components of the carbon cycle highlights the complex nature of ecosystem responses to climate change in North American grasslands. 相似文献
18.
荒漠草原区地上净初级生产力和土壤呼吸对降水变化的不同响应降水变化既影响地上植被动态,也影响地下碳循环过程,尤其以干旱半干旱生态系统对降水的响应更为敏感。然而极端降水如何影响土壤碳固存潜力仍未得出明确结果。本研究在黄土高原西部荒漠草原样地实施了为期3年的降水控制实验,该实验包含5个降水梯度(即自然降水(对照),以及在自然降水基础上的减水40%、减水20%、增水20%、增水40%)。通过对不同降水处理下植物生长指标、地上净初级生产力(ANPP)、土壤水分和土壤呼吸(Rs)进行监测,采用双侧不对称模型揭示ANPP和Rs对降水变化的响应规律;采用结构方程模型,分析降水变化下影响ANPP和Rs的直接和间接因素。研究结果表明,ANPP对极端干旱的响应比极端湿润更敏感,在干旱和湿润年份均符合负向不对称模型。ANPP的变化主要受到降水的直接影响,同时,干旱年份植物密度的变化也对ANPP产生了影响。在湿润年份,Rs对降水变化的响应也呈负向不对称性。然而,干旱年份,Rs对降水变化表现出正向不对称响应,即对降水增加响应的敏感性高于降水减少,这可能与植物生长和ANPP对增水处理的正响应增加使自氧呼吸增强,及降水事件对异氧呼吸具有较强的‘Birch效应’有关。在干旱年份Rs对极端干旱(减水40%处理)表现出饱和响应。ANPP和Rs对降水格局改变的响应模式差异表明荒漠草原区极端湿润或干旱可能降低研究区土壤碳固存的潜力。 相似文献
19.
Antje Gittel Ji?í Bárta Iva Kohoutová Robert Mikutta Sarah Owens Jack Gilbert J?rg Schnecker Birgit Wild Bjarte Hannisdal Joeran Maerz Nikolay Lashchinskiy Petr ?apek Hana ?antr??ková Norman Gentsch Olga Shibistova Georg Guggenberger Andreas Richter Vigdis L Torsvik Christa Schleper Tim Urich 《The ISME journal》2014,8(4):841-853
Cryoturbation, the burial of topsoil material into deeper soil horizons by repeated freeze–thaw events, is an important storage mechanism for soil organic matter (SOM) in permafrost-affected soils. Besides abiotic conditions, microbial community structure and the accessibility of SOM to the decomposer community are hypothesized to control SOM decomposition and thus have a crucial role in SOM accumulation in buried soils. We surveyed the microbial community structure in cryoturbated soils from nine soil profiles in the northeastern Siberian tundra using high-throughput sequencing and quantification of bacterial, archaeal and fungal marker genes. We found that bacterial abundances in buried topsoils were as high as in unburied topsoils. In contrast, fungal abundances decreased with depth and were significantly lower in buried than in unburied topsoils resulting in remarkably low fungal to bacterial ratios in buried topsoils. Fungal community profiling revealed an associated decrease in presumably ectomycorrhizal (ECM) fungi. The abiotic conditions (low to subzero temperatures, anoxia) and the reduced abundance of fungi likely provide a niche for bacterial, facultative anaerobic decomposers of SOM such as members of the Actinobacteria, which were found in significantly higher relative abundances in buried than in unburied topsoils. Our study expands the knowledge on the microbial community structure in soils of Northern latitude permafrost regions, and attributes the delayed decomposition of SOM in buried soils to specific microbial taxa, and particularly to a decrease in abundance and activity of ECM fungi, and to the extent to which bacterial decomposers are able to act as their functional substitutes. 相似文献
20.
Experimental evidence for impacts of increased climatic variability and extremes on ecosystems is urgently needed. The constraint in our knowledge, however, is not caused by the uncertainty in the applied climate scenarios. We need mechanistic understanding from experiments challenging ecological thresholds coupled with ecosystem models to allow for meaningful up‐scaling. 相似文献