首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of the development of assisted reproduction techniques in dogs and cats is their application to non-domestic canine and feline species, most of which are considered threatened or endangered. Among these techniques, an entirely in vitro system for embryo production is effectively an important tool for conservation of wildlife. In the last decade, progress has been made in embryo production in carnivores. It has been shown that canine oocytes can resume meiosis in vitro and that these oocytes can be fertilized and developed in vitro, although at a much lower rate than most other domestic animal oocytes. The reason lies in the dissimilarities of reproductive physiology of the dog compared to other species and the lack of precise information concerning the oviductal environment, in which oocyte maturation, fertilization and early embryonic development take place. Successful in vitro embryo production in the domestic cat has been attained with oocytes matured in vitro, and kittens were born after transfer of IVM/IVF derived embryos. On the basis of these results the in vitro fertilization of oocytes has also been applied in several non-domestic feline species. The effectiveness of such protocols in the preservation of genetic material of rare species can be improved by developing better techniques for long-term storage of gametes. In dogs and cats sperm cells have been successfully frozen and the cryopreservation of oocytes would greatly increase their availability for a range of reproductive technologies. Cryopreserved cat oocytes can be fertilized successfully and their development in vitro after fertilization is enhanced when mature oocytes are frozen. Thus refined techniques of oocyte maturation and fertilization in vitro coupled with oocyte cryopreservation could allow for an easy establishment of genetic combinations when male and female gametes in the desired combination are not simultaneously available, and the propagation of endangered carnivores would be facilitated.  相似文献   

2.
The oocyte of the domestic dog is unique from that of other mammalian species studied to date. Ovulation occurs either once or twice per year, with the oocyte released at the germinal vesicle stage, and then completing nuclear and cytoplasmic maturation within the oviduct under the influence of rising circulating progesterone. In vivo meiotic maturation of the bitch oocyte is completed within 48-72 h after ovulation, which is longer than 12-36 h required for oocytes from most other mammalian species. Due to these inherently novel traits, in vitro culture systems developed for maturing oocytes of other species have been found inadequate for maturation of dog oocytes. On average, only 15-20% of ovarian oocytes achieve the metaphase II stage after 48-72 h of in vitro culture. Thus far, no offspring have been produced in the dog (or other canids) by transferring embryos derived from in vitro matured oocytes. This review addresses current knowledge about dog reproductive physiology, specifically those factors influencing in vitro developmental competence of the oocyte. This summary lays a foundation for identifying the next steps to understanding the mechanisms regulating meiotic maturation and developmental competence of the dog oocyte.  相似文献   

3.
4.
alpha-Solanine and alpha-chaconine are two naturally occurring steroidal glycoalkaloids in potatoes (Solanum tuberosum), and solanidine-N-oxide is a corresponding steroidal aglycone. The objective of this research was to screen potential cyto-toxicity of these potato glycoalkaloids using bovine oocyte maturation, in vitro fertilization techniques and subsequent embryonic development as the in vitro model. A randomized complete block design with four in vitro oocyte maturation (IVM) treatments (Experiment 1) and four in vitro embryo culture (IVC) treatments (Experiment 2) was used. In Experiment 1, bovine oocytes (n=2506) were matured in vitro in medium supplemented with 6 microM of alpha-solanine, alpha-chaconine, solanidine-N-oxide or IVM medium only. The in vitro matured oocytes were then subject to routine IVF and IVC procedures. Results indicated that exposure of bovine oocytes to the steroidal glycoalkaloids during in vitro maturation inhibited subsequent pre-implantation embryo development. Potency of the embryo-toxicity varied between these steroidal glycoalkaloids. In Experiment 2, IVM/IVF derived bovine embryos (n=2370) were cultured in vitro in medium supplemented with 6 microM of alpha-solanine, alpha-chaconine, solanidine-N-oxide or IVC medium only. The results showed that the pre-implantation embryo development is inhibited by exposure to these glycoalkaloids. This effect is significant during the later pre-implantation embryo development period as indicated by fewer numbers of expanded and hatched blastocysts produced in the media containing these alkaloids. Therefore, we conclude that in vitro exposure of oocytes and fertilized ova to the steroidal glycoalkaloids from potatoes inhibits pre-implantation embryo development. Furthermore, we suggest that ingestion of Solanum species containing toxic amounts of glycoalkaloids may have negative effects on pre-implantation embryonic survival.  相似文献   

5.
Current methods for detecting complete oocyte maturation and developmental competence are inadequate. The objectives of this study were to (1) examine the relationship between cat oocyte energy metabolism and development in vitro after fertilization and (2) determine if cumulus cell metabolism could be used to predict development of individual oocytes after fertilization in vitro. The hanging drop method was used to assess metabolism of three different types of cat oocytes: immature (IMO), in vitro matured (IVM), and in vivo matured (IVOM). Stage of oocyte nuclear maturation or developmental competence was assessed after metabolic analysis. Glycolysis and oxidation of glucose, glutamine, palmitate, and lactate increased with the resumption of oocyte meiotic maturation (P<0.05). Pyruvate was the preferred substrate, but uptake was not linked to maturation. IVM oocytes had impaired glucose and palmitate metabolism compared to IVOM oocytes (P<0.05). Oocyte glycolytic activity and oocyte glucose oxidation correlated well with embryo development after insemination in vitro (P<0.05). Furthermore, oocytes that had similar glucose metabolism and that were grouped together for culture on this basis had higher (P<0.05) overall rates of development than oocytes grouped randomly. There was no correlation (P>0.05) between cumulus cell metabolism and individual oocyte development after in vitro fertilization. The data reveal that energy metabolism is linked to oocyte maturation in the cat and that glucose metabolic activity can indicate those oocytes most likely to fertilize and develop in vitro. Measuring cumulus cell metabolism does not accurately predict individual oocyte development after insemination in vitro.  相似文献   

6.
Development of assisted reproductive technologies in horses has been relatively slow compared to other domestic species, namely ruminants and pigs. The scarce availability of abattoir ovaries and the lack of interest from horse breeders and breed associations have been the main reasons for this delay. Progressively though, the technology of oocyte maturation in vitro has been established followed by the application of ICSI to achieve fertilization in vitro. Embryo culture was initially performed in vivo, in the mare oviduct or in the surrogate sheep oviduct, to achieve the highest embryo development, in the range of 18-36% of the fertilised oocytes. Subsequently, the parallel improvement of in vitro oocyte maturation conditions and embryo culture media has permitted high rates of embryo development from in vitro matured and in vitro cultured ICSI embryos, ranging from 5 to 10% in the early studies to up to 38% in the latest ones. From 2003, with the birth of the first cloned equids, the technology of somatic cell nuclear transfer has also become established due to improvement of the basic steps of embryo production in vitro, including cryopreservation. Pregnancy and foaling rates are still estimated based on a small number of in vitro produced equine embryos transferred to recipients. The largest set of data on non-surgical embryo transfer of in vitro produced embryos, from ICSI of both abattoir and in vitro-matured Ovum Pick Up (OPU) oocytes, and from somatic cell nuclear transfer, has been obtained in our laboratory. The data demonstrate that equine embryos produced by OPU and then cryopreserved can achieve up to 69% pregnancy rate with a foaling rate of 83%. These percentages are reduced to 11 and 23%, respectively, for cloned embryos. In conclusion, extensive evidence exists that in vitro matured equine oocytes can efficiently develop into viable embryos and offspring.  相似文献   

7.
Wang ZK  Wei PH  Wang JZ  Lei C  Kou MQ 《Theriogenology》1992,37(3):733-739
Four experiments were conducted to study 1) factors affecting porcine oocyte maturation in culture medium and 2) a new method for oocyte maturation outside the porcine body. In Experiment 1, five groups of oocytes were cultured in m-TCM199 or m-KRB medium for 24 to 28, 32 to 36 or 40 to 42 hours and then were fertilized in vitro. The cleavage rate (two to four-cell stage) of oocytes cultured for 32 to 36 hours was significantly higher than those of the other oocytes. The results indicate that a suitable culture period for the in vitro maturation of porcine oocytes is 32 to 36 hours. In Experiment 2, four groups of oocytes were cultured in m-KRB or m-KRB supplemented with PFF, PMSG or FSH for in vitro maturation, and the cleavage rates of oocytes were 7.94, 22.56, 30.23 and 23.26%, respectively, after in vitro fertilization. The results show that porcine follicular fluid (PFF) and gonadotrophins added to the culture medium promote porcine oocyte maturation in vitro. In Experiment 3, oocytes were cultured in m-KRB or m-TCM199, supplemented with both gonadotrophin and pocine folliclar fluid for maturation in vitro. After fertilization in vitro, the cleavage rates of oocytes were 26.32 and 27.93% for the two media. The results indicate that the difference between m-KRB and m-TCM199 was insignificant when the media were used to culture porcine oocytes. But there was a significant difference when PFF and gonadotrophins were added to the basic media. In Experiment 4, porcine oocytes were transferred into the reproductive tracts of other animals for maturation. After 34 to 36 hours, the oocytes were collected and fertilized in vitro. The cleavage rates of oocytes were 10.42, 28.45, 3.33 and 36.36%, respectively, for the oocytes matured in mouse uterine horns, rat uterine horns, rat oviducts or rabbit oviducts. The results show that porcine oocytes can be matured in the reproductive tracts of other animals.  相似文献   

8.
Factors involved in vivo and in vitro maturation of canine oocytes   总被引:2,自引:0,他引:2  
The domestic dog could be a valuable model for studying and developing assisted reproduction in taxonomically related endangered Canids. However, the efficiency of in vitro oocyte maturation is very low in this species compared to that of other mammalian species and this limits the development of reproductive biotechnologies, such as in vitro embryo production, cryopreservation, or nucleus transfer. In canine species the female gamete has unique characteristics: the oocyte is exposed to high concentration of progesterone in the follicular environment, it is ovulated in the dictyate state, and resumes and completes meiosis in the oviduct. Therefore, optimum conditions for in vitro maturation of dog oocytes may differ from other mammalian models in which follicles, where estrogens are the dominant hormones, ovulate oocytes at the Metaphase II stage of the first meiotic division. An in vitro culture system needs to be based on in vivo conditions in order to create a microenvironment similar to that in which oocyte development occurs physiologically, but little is known on mechanisms regulating oocyte maturation in the dog. This review analyzes the known factors involved in canine oocyte maturation in vivo and in vitro in order to suggest on which aspects future investigations may be focused.  相似文献   

9.
Beauvericin (BEA) is a mycotoxin produced by Beauveria bassiana and Fusarium species recently reported as toxic on porcine oocyte maturation and embryo development. The aim of this study was to assess, in the juvenile sheep, whether its effects are due to alterations of oocyte and/or embryo bioenergetic/oxidative status. Cumulus‐oocyte‐complexes (COCs) were exposed to BEA during in vitro maturation (IVM), evaluated for cumulus cell (CC) apoptosis, oocyte maturation and bioenergetic/oxidative status or subjected to in vitro fertilization (IVF) and embryo culture (IVEC). Oocyte nuclear maturation and embryo development were assessed after Hoechst staining and CC apoptosis was analysed by terminal deoxynucleotidyl transferase‐mediated dUTP nick‐End labeling assay and chromatin morphology after Hoechst staining by epifluorescence microscopy. Oocyte and blastocyst bioenergetic/oxidative status were assessed by confocal microscopy after mitochondria and reactive oxygen species labelling with specific probes. BEA showed various toxic effects, that is, short‐term effects on somatic and germinal compartment of the COC (CCs and the oocyte) and long‐term carry‐over effects on developing embryos. In detail, at 5 µM, it significantly reduced oocyte maturation and immature oocytes showed increased late‐stage (Type C) CC apoptosis and DNA fragmentation while matured oocytes showed unaffected CC viability but abnormal mitochondrial distribution patterns. At lower tested concentrations (3–0.5 µM), BEA did not affect oocyte maturation, but matured oocytes showed reduced mitochondrial activity. At low concentrations, BEA impaired embryo developmental capacity and blastocyst quality after IVF and IVEC. In conclusion, in the juvenile sheep, COC exposure to BEA induces CC apoptosis and oocyte mitochondrial dysfunction with negative impact on embryo development.  相似文献   

10.
The study of in vitro maturation (IVM) of rhesus monkey oocytes has important implications for biomedical research and human infertility treatment. In vitro-matured rhesus monkey oocytes show much less developmental potential than IVM oocytes of other species. Since about 1980 when rhesus monkey IVM, in vitro fertilization (IVF) and in vitro embryo culture (IVC) systems were established, numerous efforts have been made to improve the developmental competence of oocytes and to understand the mechanisms regulating oocyte maturation. This review describes recent progress in this area, particularly the effects of factors such as steroid hormones, energy substrates, amino acids, ovarian follicle status, maternal age and breeding season on the developmental competence, gene expression patterns and genome integrity of rhesus IVM oocytes.  相似文献   

11.
There have been intensive attempts to establish reliable in vitro production (IVP) and cryopreservation methods of embryos in pigs. Although a great deal of progress has been made, current IVP systems and cryopreservation still suffer from insufficient cytoplasmic abilities of in vitro matured oocytes, polyspermic fertilization, poor quality of in vitro produced embryos and low efficiency of embryo cryopreservation. Compared to other mammalian species, pig oocytes and embryos are characterized by large amounts of lipid content stored mainly in the form of lipid droplets in the cytoplasm. This fact has a negative influence on biotechnological applications on porcine oocytes and embryos. In this review, we will discuss recent studies about methods and techniques for modifying porcine embryo IVP system and embryo cryopreservation that produces high quality of pig blastocysts using in vitro maturation, in vitro fertilization, in vitro culture, microsurgical manipulation, addition of protein, the use of cytoskeleton stabilizing agents and various physical methods. The presented methods and techniques make it possible to modify the characteristics of oocytes and embryos and thus may become major tools in mammalian gamete and embryo agricultural or biotechnological applications in the future.  相似文献   

12.
This study was designed to investigate the effect of follicle-stimulating hormone (FSH) on nuclear maturation, fertilization, and early embryonic development of in-vitro-matured bovine oocytes and to find out whether this effect is exerted through a cyclic adenosine monophosphate (cAMP) signal transduction pathway. In addition the effect of the combination of FSH and growth hormone (GH) on subsequent cleavage and embryo development was studied. Therefore cumulus oocyte complexes were cultured in the presence of FSH (0.05 IU/ml) and the nuclear stage of the oocytes was assessed using 4,6-diamino-2-phenyl-indole (DAPI) staining either after 16, 20, or 24 hr of in vitro maturation or 18 hr after the onset of fertilization. To assess the effect of FSH and the combination of FSH and GH added during in vitro maturation on the developmental capacity of the oocytes, cumulus oocyte complexes were incubated in the presence of either FSH (0.05 IU/ml) or FSH (0.05 IU/ml) plus GH (100 ng/ml) for 22 hr, followed by in vitro fertilization and in vitro embryo culture. To investigate whether FSH-induced oocyte maturation is exerted through the cAMP pathway, cumulus oocyte complexes were cultured in M199 supplemented with FSH (0.05 IU/ml) and H-89 (10 μM), a specific inhibitor of cAMP-dependent protein kinase A. After 16 hr of culture, the proportion of oocytes in metaphase II (MII) stage was determined. Cultures with GH and without FSH and H-89 served as controls. The percentage of MII oocytes at 16 hr of incubation was significantly lower (P < 0.001) in the presence of FSH than in the control group, while the number of MII oocytes beyond 20 hr did not differ from the control group. That points to a transient inhibition of nuclear maturation by FSH. Opposite to FSH, addition of GH during in vitro maturation significantly enhanced the number of MII oocytes after 16 hr of culture (P < 0.001), which points to the acceleration of nuclear maturation by GH. Addition of FSH during in vitro maturation significantly enhanced the proportion of normal fertilized oocytes, cleaved embryos and blastocysts (P < 0.001). Similarly, addition of GH during in vitro maturation significantly enhanced the number of cleaved embryos and blastocysts (P < 0.001); however, in vitro maturation in the presence of GH and FSH did not result in an extra enhancement of the embryo development. Both the inhibition of nuclear maturation by FSH and its acceleration by GH was completely abolished by H-89. In conclusion, in vitro maturation of bovine oocytes in the presence of FSH retards nuclear maturation via a cAMP-mediated pathway, while it enhances fertilizability and developmental ability of the oocytes. Supplementation of GH and FSH during in vitro maturation did not result in an extra increase in the number of blastocysts following in vitro fertilization and in vitro embryo culture. Mol. Reprod. Dev. 51:339–345, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
Mitochondrial metabolic capacity and DNA replication have both been shown to affect oocyte quality, but it is unclear which one is more critical. In this study, immature oocytes were treated with FCCP or ddC to independently inhibit the respective mitochondrial metabolic capacity or DNA replication of oocytes during in vitro maturation. To differentiate their roles, we evaluated various parameters related to oocyte maturation (germinal vesicle break down and nuclear maturation), quality (spindle formation, chromosome alignment, and mitochondrial distribution pattern), fertilization capability, and subsequent embryo developmental competence (blastocyst formation and cell number of blastocyst). Inhibition of mitochondrial metabolic capacity with FCCP resulted in a reduced percent of oocytes with nuclear maturation; normal spindle formation and chromosome alignment; evenly distributed mitochondria; and an ability to form blastocysts. Inhibition of mtDNA replication with ddC has no detectable effect on oocyte maturation and mitochondrial distribution, although high-dose ddC increased the percent of oocytes showing abnormal spindle formation and chromosome alignment. ddC did, however, reduce blastocyst formation significantly. Neither FCCP nor ddC exposure had an effect on the rate of fertilization. These findings suggest that the effects associated with lower mitochondrial DNA copy number do not coincide with the effects seen with reduced mitochondrial metabolic activity in oocytes. Inhibiting mitochondrial metabolic activity during oocyte maturation has a negative impact on oocyte maturation and subsequent embryo developmental competence. A reduction in mitochondrial DNA copy number, on the other hand, mainly affects embryonic development potential, but has little effect on oocyte maturation and in vitro fertilization.  相似文献   

14.
The equine oocyte: Factors affecting meiotic and developmental competence   总被引:1,自引:0,他引:1  
There is currently much interest in assisted reproduction techniques in the horse, however, many aspects of oocyte maturation, fertilization, and embryo development in the horse differ from those in other species. Because of the close attachment of the equine oocyte to the follicle wall, scraping of the follicle is the most effective method for oocyte recovery. A notable feature of equine oocytes is that those with expanded cumuli (Ex oocytes), which originate from atretic follicles, have higher meiotic competence (ability to mature to metaphase II in vitro) than do oocytes with compact cumuli (Cp oocytes). Cp oocytes originate in viable follicles but are largely juvenile. Recovery and culture of equine oocytes immediately after slaughter yields a higher maturation rate than that obtained from oocytes after ovary storage; this is related to damage to chromatin in Cp oocytes during storage. In contrast, developmental competence (rate of blastocyst development in vitro) is higher in oocytes recovered from the ovary after a delay. The optimum duration of maturation varies based on cumulus morphology and time of recovery from the ovary, but there is no difference in developmental competence between Ex and Cp oocytes. Because standard in vitro fertilization is not repeatable in the horse, oocyte transfer (surgical transfer of oocytes to the oviducts of inseminated mares) has been developed to allow fertilization of isolated oocytes. Fertilization in vitro may be achieved using intracytoplasmic sperm injection; culture of injected oocytes in a medium with high glucose can yield over 30% blastocyst development. Mol. Reprod. Dev. 77: 651–661, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
影响山羊体外受精的因素   总被引:5,自引:0,他引:5  
以屠宰山羊卵母细胞为材料研究了公羊个体、附睾不同部位精子、成熟培养和受精时卵丘存在与否、卵丘扩展程度及卵龄对山羊体外受精的影响。结果表明 :1)不同公羊精液在受精、卵裂和桑椹 /囊胚率上都有显著差异 ;2 )附睾尾精子和鲜精的受精、卵裂和桑椹 /囊胚率无显著差异 ,但显著高于附睾体和附睾头精子 ;3)成熟培养 2 4和 2 7h卵母细胞的的桑椹胚 /囊胚率显著高于培养 2 1和 30h卵母细胞 ;4 )卵丘扩展 3和 4级卵母细胞受精和桑椹胚 /囊胚率显著高于扩展 0和 1级卵母细胞 ;5 )成熟培养前机械去卵丘严重影响卵母细胞体外受精和桑椹胚 /囊胚率 ;6 )受精前完全去掉卵丘显著影响桑椹胚 /囊胚率  相似文献   

16.
Several contemporary micromanipulation techniques, such as sperm microinjection, nuclear transfer, and gene transfer by pronuclear injection, require removal of cumulus cells from oocytes or zygotes at various stages. In humans, the cumulus cells are often removed after 15–18 hr of sperm-oocyte coincubation to assist the identification of the fertilization status. This study was designed to evaluate the function of cumulus cells during oocyte maturation, fertilization, and in vitro development in cattle. Cumulus cells were removed before and after maturation and after fertilization for 0,7,20, and 48 hr. The cumulus-free oocytes or embryos were cultured either alone or on cumulus cell monolayers prepared on the day of maturation culture. Percentages of oocyte maturation, fertilization, and development to cleavage, morula, and blastocyst stages and to expanding or hatched blastocysts were recorded for statistical analysis by categorical data modeling (CATMOD) procedures. Cumulus cells removed before maturation significantly reduced the rate of oocyte maturation (4–26% vs. 93–96%), fertilization (0–9% vs. 91–92%), and in vitro development at all stages evaluated. Cumulus cells removed immediately prior to in vitro fertilization (IVF) or 7 hr after IVF reduced the rates of fertilization (58–60% and 71%, respectively, vs. 91–92% for controls), cleavage development (40–47% and 53–54% vs. 74–78% for controls), and morula plus blastocyst development (15% and 24% vs. 45%, P < 0.05). Cumulus cell co-culture started at various stages had no effect on fertilization and cleavage development but significantly improved rates of embryo development to morula or blastocyst stages (P < 0.05). Cumulus cell removal at 20 hr after IVF resulted in similar development to controls (P > 0.05) at all stages tested in this study. The intact state of surrounding cumulus cells of oocytes or embryos appears to be beneficial before or shortly after insemination (at or before 7 hr of IVF) but not essential at 20 hr after IVF. © 1995 Wiley-Liss, Inc.  相似文献   

17.
The aim of this study was to investigate the effect of the duration of oocyte in vitro maturation (IVM) and gamete co-incubation on the in vitro embryo (IVEP) production efficiency in River buffalo. In Experiment 1, abattoir-derived cumulus oocyte complexes were fixed at 0, 3, 6, 9, 12, 15, 18, 21 and 24 h after the start of in vitro maturation to study the kinetics of nuclear maturation. In Experiment 2, cumulus oocyte complexes were fertilized in vitro following in vitro maturation for 18, 21, 24, 27 or 30 h. After 20 h of gamete co-incubation, presumptive zygotes were denuded and cultured in vitro in synthetic oviduct fluid (SOF) medium. In Experiment 3, following in vitro maturation and fertilization, presumptive zygotes were removed from fertilization drops at 8, 12, 16 and 20 h post-insemination (pi) and placed in culture as described above. Representative samples of oocytes were fixed at 4, 8, 12, 16 and 20 h to evaluate the sperm penetration rate and the incidence of polyspermy at different co-incubation times. The main conclusions of the study are that: (1) the majority of buffalo oocytes accomplish nuclear maturation between 21 and 24 h after the start of in vitro maturation; (2) both cleavage and blastocyst rates linearly decrease with increasing duration of in vitro maturation (from 18 to 30 h); (3) sperm-oocyte incubation for at least 16 h is required for maximum blastocyst yields.  相似文献   

18.
《Small Ruminant Research》2010,90(2-3):144-148
Assisted reproductive technologies (ART) such as artificial insemination (AI) and multiple ovulation and embryo transfer (MOET) have been used to increase reproductive efficiency and accelerate genetic gain. The principal limitations of MOET are due to variable female response to hormonal treatment, fertilization failures and premature regression of Corpora luteum. The in vitro production (IVP) of embryos offers the possibility of overcoming MOET limitations. The method of IVP of embryos involves three main steps: in vitro maturation of oocytes (IVM), in vitro fertilization of oocytes (IVF) with capacitated sperm and in vitro culture (IVC) of embryos up to blastocyst stage. Recovering oocytes from live selected females by laparoscopic ovum pick-up (LOPU) and breeding prepubertal females by juvenile in vitro embryo technology (JIVET) will allow a greater production of valuable goats. Also, IVP of goat embryos will provide an excellent source of embryos for basic research on development biology and for commercial applications of transgenic and cloning technologies. Different protocols of IVP of embryos have been used in goats. However oocyte quality is the main factor for embryos reaching blastocyst stage from IVM/IVF/IVC oocytes. One of the principal determinant factors in the results of blastocyst development is the age of the oocyte donor females. In goats, oocytes from prepubertal and adult females do not show differences in in vitro maturation and in vitro fertilization; however the percentage of oocytes reaching blastocyst stage ranges from 12 to 36% with oocytes from prepubertal and adult goats, respectively.  相似文献   

19.
Three experiments were conducted to evaluate the effect of oocyte and sperm treatments on rates of in vitro fertilization (IVF) in the horse and to determine the capacity of in vitro-matured horse oocytes to be fertilized in vivo. There was no effect of duration of oocyte maturation (24 vs. 42 h) or calcium ionophore concentration during sperm capacitation (3 microM vs. 7.14 microM) on in vitro fertilization rates. Oocytes matured in 100% follicular fluid had significantly higher fertilization (13% to 24%) than did oocytes matured in maturation medium or in 20% follicular fluid (0% to 12%; P < 0.05). There was no significant difference in fertilization rate among 3 sperm treatments utilizing 7.14 microM calcium ionophore (12% to 21%). Of in vitro-matured oocytes recovered 40-44 h after transfer to the oviducts of inseminated mares, 77% showed normal fertilization (2 pronuclei to normal cleavage). Cleavage to 2 or more cells was seen in 22% of oocytes matured in follicular fluid and 63% of oocytes matured in maturation medium; this difference was significant (P < 0.05). We conclude that in vitro-matured horse oocytes are capable of being fertilized at high rates in the appropriate environment and that in vitro maturation of oocytes in follicular fluid increases fertilization rate in vitro but reduces embryo development after fertilization in vivo. Further work is needed to determine the optimum environment for sperm capacitation and IVF in the horse.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号