首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The troponin (Tn) is a ternary complex consisting of three subunits TnC, TnI and TnT; molecular disruption of the Tn complex has been recognized as an attractive strategy against neuropathic pain. Here, a self-inhibitory peptide is stripped from the switch region of TnI interaction interface with TnC, which is considered as a lead molecular entity and then used to generate potential peptide disruptors of TnC–TnI interaction based on a rational molecular design protocol. The region is a helical peptide segment capped by N- and C-terminal disorders. Molecular dynamics simulation and binding free energy analysis suggests that the switch peptide can interact with TnC in a structurally and energetically independent manner. Terminal truncation of the peptide results in a number of potent TnC binders with considerably simplified structure and moderately decreased activity relative to the native switch. We also employ fluorescence polarization assays to substantiate the computational findings; it is found that the rationally designed peptides exhibit moderate or high affinity to TnC with dissociation constants KD at micromolar level.  相似文献   

2.
The N-terminal extension of cardiac troponin I (TnI) is bisphosphorylated by protein kinase A in response to beta-adrenergic stimulation. How this signal is transmitted between TnI and troponin C (TnC), resulting in accelerated Ca(2+) release, remains unclear. We recently proposed that the unphosphorylated extension interacts with the N-terminal domain of TnC stabilizing Ca(2+) binding and that phosphorylation prevents this interaction. We now use (1)H NMR to study the interactions between several N-terminal fragments of TnI, residues 1-18 (I1-18), residues 1-29 (I1-29), and residues 1-64 (I1-64), and TnC. The shorter fragments provide unambiguous information on the N-terminal regions of TnI that interact with TnC: I1-18 does not bind to TnC whereas the C-terminal region of unphosphorylated I1-29 does bind. Bisphosphorylation greatly weakens this interaction. I1-64 contains the phosphorylatable N-terminal extension and a region that anchors I1-64 to the C-terminal domain of TnC. I1-64 binding to TnC influences NMR signals arising from both domains of TnC, providing evidence that the N-terminal extension of TnI interacts with the N-terminal domain of TnC. TnC binding to I1-64 broadens NMR signals from the side chains of residues immediately C-terminal to the phosphorylation sites. Binding of TnC to bisphosphorylated I1-64 does not broaden these NMR signals to the same extent. Circular dichroism spectra of I1-64 indicate that bisphosphorylation does not produce major secondary structure changes in I1-64. We conclude that bisphosphorylation of cardiac TnI elicits its effects by weakening the interaction between the region of TnI immediately C-terminal to the phosphorylation sites and TnC either directly, due to electrostatic repulsion, or via localized conformational changes.  相似文献   

3.
The N-terminal regulatory region of Troponin I, residues 1-40 (TnI 1-40, regulatory peptide) has been shown to have a biologically important function in the interactions of troponin I and troponin C. Truncated analogs corresponding to shorter versions of the N-terminal region (1-30, 1-28, 1-26) were synthesized by solid-phase methodology. Our results indicate that residues 1-30 of TnI comprises the minimum sequence to retain full biological activity as measured in the acto-S1-TM ATPase assay. Binding of the TnI N-terminal regulatory peptides (TnI 1-30 and the N-terminal regulatory peptide (residues 1-40) labeled with the photoprobe benzoylbenzoyl group, BBRp) were studied by gel electrophoresis and photochemical cross-linking experiments under various conditions. Fluorescence titrations of TnI 1-30 were carried out with TnC mutants that carry a single tryptophan fluorescence probe in either the N- or C-domain (F105W, F105W/C domain (88-162), F29W and F29W/N domain (1-90)) (Fig. 1). Low Kd values (Kd < 10(-7) M) were obtained for the interaction of F105W and F105W/C domain (88-162) with TnI 1-30. However, there was no observable change in fluorescence when the fluorescence probe was located at the N-domain of the TnC mutant (F29W and F29W/N domain (1-90)). These results show that the regulatory peptide binds strongly to the C-terminal domain of TnC.  相似文献   

4.
5.
The number of specific Ca2+ bound to Akazara scallop troponin C was estimated to be 0.7 with an apparent binding constant of 5 x 10(5) M-1 (T. Ojima and K. Nishita, 1986, J. Biol. Chem. 261, 16749-16754). In the present paper, we report on the Ca(2+)-induced conformational changes in the troponin C and the interaction of the troponin C with rabbit troponin subunits. The Ca2+ binding to the troponin C caused a marked change in difference uv absorption spectra and a retardation of elution on Sephacryl S-200 gel filtration. However, its circular dichroism spectrum was hardly changed by the Ca2+ binding. These results suggest that the Ca2+ binding to the troponin C induced changes predominantly in tertiary structure rather than in secondary structure. Akazara scallop troponin C was shown to be able to bind to rabbit troponin I-Cellulofine affinity column, but the affinity was not greatly increased by Ca2+ unlike the case of rabbit troponin C. On hybridizing with rabbit troponin T and I, Akazara scallop troponin C was shown to be incapable of substituting rabbit troponin C; i.e., the hybrid troponin strongly inhibited the Mg-ATPase activity of rabbit actomyosin-tropomyosin irrespective of the presence or absence of Ca2+, thus recovering no Ca2+ sensitivity.  相似文献   

6.
Melittin has been found to interact with troponin C with high affinity in the presence of Ca2+. The association constant approaches in magnitude that for melittin and calmodulin. The interaction results in a shift to lower wavelengths of the emission band of Trp-19 of melittin and in an increased shielding of Trp-19 from quenching. A major increase occurs in the α-helical content of combined melittin. Formation of the complex inhibits tryptic hydrolysis of the connecting strand. The properties of fluorescent labels attached to Met-25 and to AEDANS-98 are altered as a result of the interaction. It is concluded that the combined melittin makes extensive contact with the connecting strand and adjacent portions of the N- and C-terminal lobes.  相似文献   

7.
Apolipoprotein A-IV (apoA-IV) is a 376-amino acid exchangeable apolipoprotein made in the small intestine of humans. Although it has many proposed roles in vascular disease, satiety, and chylomicron metabolism, there is no known structural basis for these functions. The ability to associate with lipids may be a key step in apoA-IV functionality. We recently identified a single amino acid, Phe(334), which seems to inhibit the lipid binding capability of apoA-IV. We also found that an intact N terminus was necessary for increased lipid binding of Phe(334) mutants. Here, we identify Trp(12) and Phe(15) as the N-terminal amino acids required for the fast lipid binding seen with the F334A mutant. Furthermore, we found that individual disruption of putative amphipathic alpha-helices 3-11 had little effect on lipid binding, suggesting that the N terminus of apoA-IV may be the operational site for initial lipid binding. We also provide three independent pieces of experimental evidence supporting a direct intramolecular interaction between sequences near amino acids 12/15 and 334. This interaction could represent a unique "switch" mechanism by which apoA-IV changes lipid avidity in vivo.  相似文献   

8.
Interactions between troponin C (TnC) and troponin I (TnI) play an important role in the Ca2(+)-dependent regulation of vertebrate striated muscle contraction. Previous attempts to elucidate the molecular details of TnC-TnI interactions, mainly involving chemically modified proteins or fragments thereof, have led to the widely accepted idea that the "inhibitory region" (residues 96-116) of TnI binds to an alpha-helical segment of TnC comprising residues 89-100 in the nonregulatory, COOH-terminal domain. In an attempt to identify other possible physiologically important interactions between these proteins, 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC) was used to produce zero-length cross-links in the complex of rabbit skeletal muscle TnC and TnI. TnC was activated with EDC and N-hydroxysuccinimide (NHS) and then mixed with an equimolar amount of TnI [Grabarek, Z., & Gergely, J. (1988) Biophys. J. 53, 392a]. The resulting cross-linked TnCXI was cleaved with cyanogen bromide, trypsin, and Staphylococcus aureus V8 protease (SAP). Cross-linked peptides were purified by reverse-phase HPLC and characterized by sequence analysis. The results indicated that residues from the regulatory Ca2(+)-binding site II in the NH2-terminal domain of TnC (residues 46-78) formed cross-links with TnI segments spanning residues 92-167. The most highly cross-linked residues in TnI were Lys-105 and Lys-107, located in the inhibitory region. These results yield the first evidence for an interaction between the N-terminal domain of TnC and the inhibitory region of TnI.  相似文献   

9.
We have previously shown that mutations in troponin T (TnT), which is associated with familial hypertrophic cardiomyopathy (HCM), cause an increase in the Ca(2+) sensitivity and a potentiation of cardiac muscle contraction. To gain further insight into the patho-physiological role of these mutations, four mutations (Arg92Gln, Phe110Ile, Glu244Asp, Arg278Cys) were introduced into recombinant human cardiac TnT, and the mutants were exchanged into isolated porcine cardiac myofibrils. The effects of mutations were tested on maximal ATPase activity, the inhibitory function of troponin I (TnI) in the absence of troponin C (TnC), and the neutralizing function of TnC. Arg92Gln, Phe110Ile, and Glu244Asp markedly impaired the inhibitory function of TnI. Arg278Cys also impaired the inhibitory function of TnI, but the effect was much smaller. Phe110Ile and Glu244Asp markedly enhanced the neutralizing function of TnC and potentiated the maximum ATPase activity. Arg92Gln and Arg278Cys only slightly enhanced the neutralizing function of TnC, and they conferred no potentiation on the maximum ATPase activity. These results indicate that mutations in TnT impair multiple processes of Ca(2+) regulation by troponin, and there are marked differences in the degree of impairment from mutation to mutation.  相似文献   

10.
Multidimensional heteronuclear magnetic resonance studies of the cardiac troponin C/troponin I(1-80)/troponin I(129-166) complex demonstrated that cardiac troponin I(129-166), corresponding to the adjacent inhibitory and regulatory regions, interacts with and induces an opening of the cardiac troponin C regulatory domain. Chemical shift perturbation mapping and (15)N transverse relaxation rates for intact cardiac troponin C bound to either cardiac troponin I(1-80)/troponin I(129-166) or troponin I(1-167) suggested that troponin I residues 81-128 do not interact strongly with troponin C but likely serve to modulate the interaction of troponin I(129-166) with the cardiac troponin C regulatory domain. Chemical shift perturbations due to troponin I(129-166) binding the cardiac troponin C/troponin I(1-80) complex correlate with partial opening of the cardiac troponin C regulatory domain previously demonstrated by distance measurements using fluorescence methodologies. Fluorescence emission from cardiac troponin C(F20W/N51C)(AEDANS) complexed to cardiac troponin I(1-80) was used to monitor binding of cardiac troponin I(129-166) to the regulatory domain of cardiac troponin C. The apparent K(d) for cardiac troponin I(129-166) binding to cardiac troponin C/troponin I(1-80) was 43.3 +/- 3.2 microM. After bisphosphorylation of cardiac troponin I(1-80) the apparent K(d) increased to 59.1 +/- 1.3 microM. Thus, phosphorylation of the cardiac-specific N-terminus of troponin I reduces the apparent binding affinity of the regulatory domain of cardiac troponin C for cardiac troponin I(129-166) and provides further evidence for beta-adrenergic modulation of troponin Ca(2+) sensitivity through a direct interaction between the cardiac-specific amino-terminus of troponin I and the cardiac troponin C regulatory domain.  相似文献   

11.
Calcium controls the level of muscle activation via interactions with the troponin complex. Replacement of the native, skeletal calcium-binding subunit of troponin, troponin C, with mixtures of functional cardiac and mutant cardiac troponin C insensitive to calcium and permanently inactive provides a novel method to alter the number of myosin cross-bridges capable of binding to the actin filament. Extraction of skeletal troponin C and replacement with functional and mutant cardiac troponin C were used to evaluate the relationship between the extent of thin filament activation (fractional calcium binding), isometric force, and the rate of force generation in muscle fibers independent of the calcium concentration. The experiments showed a direct, linear relationship between force and the number of cross-bridges attaching to the thin filament. Further, above 35% maximal isometric activation, following partial replacement with mixtures of cardiac and mutant troponin C, the rate of force generation was independent of the number of actin sites available for cross-bridge interaction at saturating calcium concentrations. This contrasts with the marked decrease in the rate of force generation when force was reduced by decreasing the calcium concentration. The results are consistent with hypotheses proposing that calcium controls the transition between weakly and strongly bound cross-bridge states.  相似文献   

12.
Mammalian hexokinases (HKs) I-III are composed of two highly homologous approximately 50-kDa halves. Studies of HKI indicate that the C-terminal half of the molecule is active and is sensitive to inhibition by glucose 6-phosphate (G6P), whereas the N-terminal half binds G6P but is devoid of catalytic activity. In contrast, both the N- and C-terminal halves of HKII (N-HKII and C-HKII, respectively) are catalytically active, and when expressed as discrete proteins both are inhibited by G6P. However, C-HKII has a significantly higher Ki for G6P (KiG6P) than N-HKII. We here address the question of whether the high KiG6P of the C-terminal half (C-half) of HKII is decreased by interaction with the N-terminal half (N-half) in the context of the intact enzyme. A chimeric protein consisting of the N-half of HKI and the C-half of HKII was prepared. Because the N-half of HKI is unable to phosphorylate glucose, the catalytic activity of this chimeric enzyme depends entirely on the C-HKII component. The KiG6P of this chimeric enzyme is similar to that of HKI and is significantly lower than that of C-HKII. When a conserved amino acid (Asp209) required for glucose binding is mutated in the N-half of this chimeric protein, a significantly higher KiG6P (similar to that of C-HKII) is observed. However, mutation of a second conserved amino acid (Ser155), also involved in catalysis but not required for glucose binding, does not increase the KiG6P of the chimeric enzyme. This resembles the behavior of HKII, in which a D209A mutation results in an increase in the KiG6P of the enzyme, whereas a S155A mutation does not. These results suggest an interaction in which glucose binding by the N-half causes the activity of the C-half to be regulated by significantly lower concentrations of G6P.  相似文献   

13.
Cardiac troponin I(129-149) binds to the calcium saturated cardiac troponin C/troponin I(1-80) complex at two distinct sites. Binding of the first equivalent of troponin I(129-149) was found to primarily affect amide proton chemical shifts in the regulatory domain, while the second equivalent perturbed amide proton chemical shifts within the D/E linker region. Nitrogen-15 transverse relaxation rates showed that binding the first equivalent of inhibitory peptide to the regulatory domain decreased conformational exchange in defunct calcium binding site I and that addition of the second equivalent of inhibitory peptide decreased flexibility in the D/E linker region. No interactions between the inhibitory peptide and the C-domain of cardiac troponin C were detected by these methods demonstrating that the inhibitory peptide cannot displace cTnI(1-80) from the C-domain.  相似文献   

14.
The troponin I peptide N alpha-acetyl TnI (104-115) amide (TnIp) represents the minimum sequence necessary for inhibition of actomyosin ATPase activity of skeletal muscle (Talbot, J.A. & Hodges, R.S. 1981, J. Biol. Chem. 256, 2798-3802; Van Eyk, J.E. & Hodges, R.S., 1988, J. Biol. Chem. 263, 1726-1732; Van Eyk, J.E., Kay, C.M., & Hodges, R.S., 1991, Biochemistry 30, 9974-9981). In this study, we have used 1H NMR spectroscopy to compare the binding of this inhibitory TnI peptide to a synthetic peptide heterodimer representing site III and site IV of the C-terminal domain of troponin C (TnC) and to calcium-saturated skeletal TnC. The residues whose 1H NMR chemical shifts are perturbed upon TnIp binding are the same in both the site III/site IV heterodimer and TnC. These residues include F102, I104, F112, I113, I121, I149, D150, F151, and F154, which are all found in the C-terminal domain hydrophobic pocket and antiparallel beta-sheet region of the synthetic site III/site IV heterodimer and of TnC. Further, the affinity of TnIp binding to the heterodimer (Kd = 192 +/- 37 microM) was found to be similar to TnIp binding to TnC (48 +/- 18 microM [Campbell, A.P., Cachia, P.J., & Sykes, B.D., 1991, Biochem. Cell Biol. 69, 674-681]). The results indicate that binding of the inhibitory region of TnI is primarily to the C-terminal domain of TnC. The results also indicate how well the synthetic peptide heterodimer mimics the C-terminal domain of TnC in structure and functional interactions.  相似文献   

15.
The association constants for the formation of the binary complexes of rabbit fast skeletal muscle troponin subunits have been determined for three solution conditions: (a) 1 mM CaCl2, (b) 3 mM MgCl2 and 1 mM EGTA, and (c) 2 mM EDTA. The subunits were labeled with extrinsic fluorescence probes, either 5-(iodoacetamido)eosin (IAE) or dansylaziridine (DANZ), and the binding was detected by enhancement or quenching of the probe fluorescence. The association constant for the TnI X TnT (where TnI and TnT are the inhibitory subunit and the tropomyosin-binding subunit, respectively, of troponin) complex was measured with two different probes, IAE-TnI and IAE-TnT. The measured values were not affected by the presence of Ca2+ or Mg2+, and the mean values for the three buffer conditions are, respectively, 8.0 X 10(6) and 9.0 X 10(6) M-1 for the two probes. The association constant for TnC-TnI (where TnC is the Ca2+-binding subunit of troponin) interaction was measured with three probes, IAE-TnC, DANZ-TnC, and IAE-TnI. Values of 1.7 X 10(9), 1.2 X 10(8), and 1.0 X 10(6) M-1 were obtained, respectively, in the presence of calcium ion, in the presence of magnesium ion (no calcium), and in the absence of divalent metal ions. A mean value of 4.0 X 10(7) M-1 was obtained for the association constant of TnC X TnT using DANZ-TnC and IAE-TnC as probes in the presence of calcium or magnesium ions. A value of 4.5 X 10(6) M-1 was obtained in the absence of divalent metal ions. The results show that the presence of magnesium ion in the Ca2+-Mg2+ sites strengthens the TnC-TnI and the TnC-TnT interactions and suggest that the troponin structure would be stabilized. This likely results from the effect of magnesium ion on the Ca2+-Mg2+ domains of TnC. The presence of calcium ion in the Ca2+-specific sites provides an additional binding free energy for the TnC-TnI interaction which presumably reflects the changes in the subunit interactions required for the calcium regulatory switch.  相似文献   

16.
17.
Using several independent methods, the interaction between troponin T and troponin C from skeletal and cardiac muscles was studied. It was found that troponin T and troponin C from skeletal muscles form a complex whose stability depends on Ca2+ concentration. Study of interactions between these troponin components demonstrated that both electrostatic and hydrophobic forces are involved in the complex formation. Cardiac troponin T and troponin C weakly interact with each other irrespective of experimental conditions. It was assumed that the weakening of interactions between the components of cardiac troponin is due to structural peculiarities of cardiac troponin T.  相似文献   

18.
The cardiac-specific N-terminus of cardiac troponin I (cTnI) is known to modulate the activity of troponin upon phosphorylation with protein kinase A (PKA) by decreasing its Ca2+ affinity and increasing the relaxation rate of the thin filament. The molecular details of this modulation have not been elaborated to date. We have established that the N-terminus and the switch region of cTnI bind to cNTnC [the N-domain of cardiac troponin C (cTnC)] simultaneously and that the PKA signal is transferred via the cTnI N-terminus modulating the cNTnC affinity toward cTnI147-163 but not toward Ca2+. The Kd of cNTnC for cTnI147-163 was found to be 600 μM in the presence of cTnI1-29 and 370 μM in the presence of cTn11-29PP, which can explain the difference in muscle relaxation rates upon the phosphorylation with PKA in experiments with cardiac fibers. In the light of newly found mutations in cNTnC that are associated with cardiomyopathies, the important role played by the cTnI N-terminus in the development of heart disorders emerges. The mutants studied, L29Q (the N-domain of cTnC containing mutation L29Q) and E59D/D75Y (the N-domain of cTnC containing mutation E59D/D75Y), demonstrated unchanged Ca2+ affinity per se and in complex with the cTnI N-terminus (cTnI1-29 and cTnI1-29PP). The affinity of L29Q and E59D/D75Y toward cTnI147-163 was significantly perturbed, both alone and in complex with cTnI1-29 and cTnI1-29PP, which is likely to be responsible for the development of malfunctions.  相似文献   

19.
Lindhout DA  Boyko RF  Corson DC  Li MX  Sykes BD 《Biochemistry》2005,44(45):14750-14759
We have addressed the electrostatic interactions occurring between the inhibitory region of cardiac troponin I with the C-lobe of troponin C using scanning glycine mutagenesis of the inhibitory region. We report variations in the electric potentials due to mutation of charged residues within this complex based upon the solved NMR structure (1OZS). These results demonstrate the importance of electrostatics within this complex, and it is proposed that electrostatic interactions are integral to the formation and function of larger ternary troponin complexes. To address this hypothesis, we report (15)N NMR relaxation measurements, which suggest that, within a ternary complex involving the C-lobe and the N-terminal region of troponin I (residues 34-71), the inhibitory region maintains the electrostatic interactions with the E-helix of the C-lobe as observed within the binary complex. These results imply that, in solution, the cardiac troponin complex behaves in a manner consistent with that of the crystal structure of the skeletal isoform (1YTZ). A cardiac troponin complex possessing domain orientations similar to that of the skeletal isoform provides structural insights into altered troponin I activities as observed for the familial hypertrophic cardiomyopathy mutation R144G and phosphorylation of Thr142.  相似文献   

20.
We measured EPR spectra from a spin label on the Cys133 residue of troponin I (TnI) to identify Ca(2+)-induced structural states, based on sensitivity of spin-label mobility to flexibility and tertiary contact of a polypeptide. Spectrum from Tn complexes in the -Ca(2+) state showed that Cys133 was located at a flexible polypeptide segment (rotational correlation time tau=1.9ns) that was free from TnC. Spectra of both Tn complexes alone and those reconstituted into the thin filaments in the +Ca(2+) state showed that Cys133 existed on a stable segment (tau=4.8ns) held by TnC. Spectra of reconstituted thin filaments (-Ca(2+) state) revealed that slow mobility (tau=45ns) was due to tertiary contact of Cys133 with actin, because the same slow mobility was found for TnI-actin and TnI-tropomyosin-actin filaments lacking TnC, T or tropomyosin. We propose that the Cys133 region dissociates from TnC and attaches to the actin surface on the thin filaments, causing muscle relaxation at low Ca(2+) concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号