首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fatty acid and sterol profiles allowed for clear discrimination betweentheraphidophyte genera Chattonella,Heterosigma, Fibrocapsa andOlisthodiscus, but exhibited little differentiation forindividual Chattonella species(C.marina, C. antiqua and C.subsalsa). Sterol and fatty acid profiles do not support theseparation of Chattonella antiqua and C.marina as distinct species. Ecophenotypic variations in lipidprofiles were also observed between Chattonella strainsfromdifferent geographic locations. Sterol signatures which may be useful aschemotaxonomic markers were: the absence of C27 sterols (cholesteroland 24-dihydrozymosterol) in Heterosigma akashiwo; thepresence of isofucosterol in Chattonella; and theoccurrence of brassicasterol, poriferasterol and fucosterol inOlisthodiscus luteus. High levels of eicosapentaenoic acid(EPA; 17-27% of fatty acids) were present in all raphidophyte species. Lipidcomposition correlated more closely to recent molecular classification ofraphidophytes than carotenoid pigments.  相似文献   

2.
Since the massive bloom in 1988 in the North Sea, the prymnesiophyte flagellate Chrysochromulina polylepis Manton et Parke has been known for its ichtyotoxicity. Laboratory experiments using two different clones of C. polylepis were conducted in a comparative approach. Both clones were nearly similar in size and shape, but differed in their toxicity, as demonstrated by the Artemia bioassay. In order to study the effects of toxic C. polylepis on protozooplankton grazers, grazing experiments were performed with the heterotrophic dinoflagellate Oxyrrhis marina Dujardin as grazer. A first experiment was carried out in order to follow batch culture growth and initial grazing of O. marina when fed toxic or non-toxic clones of C. polylepis. Ingestion of the toxic clone was 27% of ingestion when fed with the non-toxic clone. When O. marina was fed with the toxic clone, vacuoles within O. marina contained fewer food particles per cell and the cells attained slower division rate (58% of the division rate estimated for the non-toxic clone). A second experiment was conducted to determine the grazing and growth response of O. marina as a function of algal food concentration. Profound differences in ingestion, clearance, division and gross growth efficiency of O. marina when fed the two clones of C. polylepis again were apparent. However, even at algal concentrations of 400×103 ml−1, O. marina is not killed by the presence or by the ingestion of toxic C. polylepis, indicating that the toxin deters grazers. In addition to grazing experiments, lipid classes and fatty acids of both algal clones were analysed and compared in order to follow the hypothesis that toxicity of C. polylepis is caused by liposaccharides, lipids, or fatty acids. However, the chemical composition with respect to lipid classes and fatty acids of both clones were quite similar, making an involvement of these substances in the toxicity towards Artemia and O. marina unlikely.  相似文献   

3.
Lipid profiles of three strains (Mexico, Australia, Japan) of Chattonella marina (Subrahmanyan) Hara et Chihara were studied under defined growth (phosphate, light, and growth phase) and harvest (intact and ruptured cells) conditions. Triacylglycerol levels were always <2%, sterols <7%, free fatty acids varied between 2 and 33%, and polar lipids were the most abundant lipid class (>51% of total lipids). The major fatty acids in C. marina were palmitic (16:0), eicosapentaenoic (EPA, 20:5ω3), octadecatetraenoic (18:4ω3), myristic (14:0), and palmitoleic (16:1ω7c) acids. Higher levels of EPA were found in ruptured cells (21.4–29.4%) compared to intact cells (8.5–25.3%). In general, Japanese N‐118 C. marina was the highest producer of EPA (14.3–29.4%), and Mexican CMCV‐1 the lowest producer (7.9–27.1%). Algal cultures, free fatty acids from C. marina, and the two aldehydes 2E,4E‐decadienal and 2E,4E‐heptadienal (suspected fatty acid‐derived products) were tested against the rainbow trout fish gill cell line RTgill‐W1. The configuration of fatty acids plays an important role in ichthyotoxicity. Free fatty acid fractions, obtained by base saponification of total lipids from C. marina showed a potent toxicity toward gill cells (median lethal concentration, LC50 (at 1 h) of 0.44 μg · mL?1 in light conditions, with a complete loss of viability at >3.2 μg · mL?1). Live cultures of Mexican C. marina were less toxic than Japanese and Australian strains. This difference could be related to differing EPA content, superoxide anion production, and cell fragility. The aldehydes 2E,4E‐decadienal and 2E,4E‐heptadienal also showed high impact on gill cell viability, with LC50 (at 1 h) of 0.34 and 0.36 μg · mL?1, respectively. Superoxide anion production was highest in Australian strain CMPL01, followed by Japanese N‐118 and Mexican CMCV‐1 strains. Ruptured cells showed higher production of superoxide anion compared to intact cells (e.g., 19 vs. 9.5 pmol · cell?1 · hr?1 for CMPL01, respectively). Our results indicate that C. marina is more ichthyotoxic after cell disruption and when switching from dark to light conditions, possibly associated with a higher production of superoxide anion and EPA, which may be quickly oxidized to produce more toxic derivates, such as aldehydes.  相似文献   

4.
Chattonella marina, a red tide or harmful algal bloom species, has caused mass fish kills and serious economic loss worldwide, and yet its toxic actions remain highly controversial. Previous studies have shown that this species is able to produce reactive oxygen species (ROS), and therefore postulated that ROS are the causative agents of fish kills. The present study investigates antioxidant responses and lipid peroxidation in gills and erythrocytes of fish (Rhabdosarga sarba) upon exposure to C. marina, compared with responses exposed to equivalent and higher levels of ROS exposure. Even though C. marina can produce a high level of ROS, gills and erythrocytes of sea bream exposed to C. marina for 1 to 6 h showed neither significant induction of antioxidant enzymes nor lipid peroxidation. Antioxidant responses and oxidative damage did not occur as fish mortality began to occur, yet could be induced upon exposure to artificially supplied ROS levels an order of magnitude higher. The result of this study implies that ROS produced by C. marina is not the principal cause of fish kills.  相似文献   

5.
A toxicological study of an axenic cell line of novel species Chattonella ovata Y. Hara et Chihara (Raphidophyceae) revealed that cultured species of sea bream (Pagrus major), horse mackerel (Trachurus japonicus), and yellowtail (Seriola quinqueradiata) were killed by 4.1–6.8 × 103, 5.4 × 103, and 2.8 × 103 cells/mL, respectively. The sensitivity of the gill lamellae to C. ovata differed among the fish species tested. This finding revealed that C. ovata was highly toxic to the cultured fish. Histological examination showed that edema and hyperplasia of the secondary gill lamellae of red sea bream and horse mackerel occurred when exposed to, or killed by C. ovata, whereas severe damage in the gill lamellae was not observed in yellowtail. Chattonella produced high amounts of superoxide anion radicals and hydrogen peroxide, possibly responsible for the fish death observed. Based on the results of this study and occurrence of a red tide by this organism in China in 2001, we consider this organism to be one of the harmful algae in coastal waters. This is the first report demonstrating that C. ovata is highly toxic to fish, and that it produces superoxide and hydrogen peroxide.  相似文献   

6.
Chattonella antiqua isolated in 2010 showed extremely more potent fish-killing activities against red sea bream, Japanese horse mackerel, and blue damselfish than those of Chattonella marina isolated in 1985. Chemiluminescence and electron spin resonance (ESR) analyses suggested greater reactive oxygen species (ROS)-producing activity of C. antiqua than that of C. marina. Sodium benzoate, a hydroxyl radical scavenger, significantly suppressed the fish-killing activity of C. antiqua on blue damselfish. The chlorophyll level in the gill tissue of blue damselfish exposed to flagellate cells increased along with the exposure time, and the cell count of gill-associated C. antiqua estimated with chlorophyll level was higher than that of C. marina. These results suggest that the ROS-producing activity and affinity of Chattonella cells to the gill surface may be important factors influencing the fish-killing activity of Chattonella species.  相似文献   

7.
Toxicity of Pfiesteria piscicida (strain CAAE #2200) in the presence of fish (juvenile hybrid tilapia, Oreochromis sp., total length 3–6 cm) has been maintained in the laboratory for 19 months by serial transfer of toxic cells using a modified maintenance protocol. Toxicity was re-induced when toxin-producing P. piscicida cells were separated from fish and cultured on algal prey for 50 days and then re-introduced to new tanks containing fish. We confirmed toxicity in a strain of P. shumwayae (strain CAAE #101272). Toxicity to fish was demonstrated in culture filtrates (0.2 μm) derived from cultures of both Pfiesteria spp., however, it was markedly reduced in comparison to unfiltered water. Filtrates retained toxic activity when stored at −20 °C for up to 6 months. Toxicity to fish was retained when filtrates were held at room temperature for 48 h, at 70 °C for 30 min or at 88–92 °C for 2 h. P. piscicida killed all finfish species tested. Grass shrimp (Paleomonetes pugio; adult 2–3 cm), blue crab (Callinectes sapidus; juvenile 4–7 cm) and brine shrimp (Artemia sp.; 18–24 h post-hatch) were unaffected by concentrations of toxin(s) that killed juvenile tilapia in 4–24 h. Ichthyotoxic activity of filtrates from fish-killing cultures and stability of the toxic activity were similar among P. piscicida and P. shumwayae. These results confirm previously reported observations on toxicity of P. piscicidaand P. shumwayae to finfish. We have maintained toxicity in the laboratory for longer periods than have previously been routinely achieved, and we have demonstrated that the toxic activity is heat stable. In contrast to previous studies with other toxic P. piscicida strains, we did not observe toxic activity to blue crabs or other crustaceans.  相似文献   

8.
Researchers examining the mechanisms of ichthyotoxicity of Pfiesteria shumwayae have come to different conclusions about the role of toxin in this process. Some attribute fish mortality solely to direct attack by these pedunculate dinoflagellates on exposed fish tissue while others have provided evidence for a role of a soluble toxin. Detection of toxin, especially in low concentrations, is a function of the sensitivity of the selected bioassay methods and the various groups addressing this question have utilized different methods. One notable difference in fish bioassay methods utilized to detect Pfiesteria-associated toxin (PfTx) is the species of fish tested. Studies that have not detected PfTx in bioassays generally have used Cyprinodon variegatus (sheepshead minnow) as the test fish while those that have detected toxin generally used Oreochromis spp. (Tilapia). In this study response of these two fish species was compared to determine their relative sensitivity to physical attack by P. shumwayae and to PfTx. The results indicate that Oreochromis niloticus is more susceptible to P. shumwayae and its associated toxin than C. variegatus and implicate differences in the ability these species to osmoregulate as a contributing factor for this phenomenon. Salinity stress enhanced susceptibility of O. niloticus to PfTx and thus improved the sensitivity of the bioassay. The observation that salinity stress enhances toxicity to O. niloticus provides additional information regarding the mechanism of PfTx toxicity although the conditions utilized are not representative of the natural habitat of these freshwater fish.  相似文献   

9.
Karlodinium veneficum is a common member of temperate, coastal phytoplankton assemblages that occasionally forms blooms associated with fish kills. Here, we tested the hypothesis that the cytotoxic and ichthyotoxic compounds produced by K. veneficum, karlotoxins, can have anti-grazing properties against the heterotrophic dinoflagellate, Oxyrrhis marina. The sterol composition of O. marina (>80% cholesterol) renders it sensitive to karlotoxin, and does not vary substantially when fed different algal diets even for prey that are resistant to karlotoxin. At in situ bloom concentrations (104–105 K. veneficum ml−1), grazing rates (cells ingested per Oxyrrhis h−1) on toxic K. veneficum strain CCMP 2064 were 55% that observed on the non-toxic K. veneficum strain MD5. At lower prey concentrations typical of in situ non-bloom levels (<103 cells ml−1), grazing rates (cells ingested per Oxyrrhis h−1) on toxic K. veneficum strain CCMP 2064 were 70–80% of rates on non-toxic strain MD5. Growth of O. marina was significantly suppressed when fed the toxic strain of K. veneficum. Experiments with mixed prey cultures, where non-toxic strain MD5 was fluorescently stained, showed that the presence of toxic strain CCMP 2064 inhibited grazing of O. marina on the co-occurring non-toxic strain MD5. Exogenous addition of a sub-lethal dose (100 ng ml−1) of purified karlotoxin inhibited grazing of O. marina by approximately 50% on the non-toxic K. veneficum strain MD5 or the cryptophyte S. major. These results identify karlotoxin as an anti-grazing compound for those grazers with appropriate sterol composition (i.e., desmethyl sterols). This strategy is likely to be an important mechanism whereby growth of K. veneficum is uncoupled from losses due to grazing, allowing it to form ichthyotoxic blooms in situ.  相似文献   

10.
The virulence of two isolates of the hyphomycete fungi, Beauveria bassianaand B. brongniartii, and additional fungal species isolated from diseased Bactrocera oleae pupae and Sesamia nonagrioideslarvae were assessed against adults of the olive fruit fly B. oleae and the Mediterranean fruit fly Ceratitis capitata (Diptera: Tephritidae). Contact and oral bioassays revealed that moderate to high mortality rates for the olive fruit fly occurred when the adults were exposed to conidia of Mucor hiemalis, Penicillium aurantiogriseum, P. chrysogenum and B. bassianaisolates. A strain of M. hiemalis isolated from S. nonagrioides larvae was the most toxic resulting in 85.2% mortality to the olive fruit fly adults. B. brongniartiiand B. bassiana were the most pathogenic to the C. capitataadults causing 97.4 and 85.6% mortality. Metabolites collected from the M. hiemalis and P. chrysogenum isolates were toxic to adults of both species.  相似文献   

11.
Over the past 5 years, raphidophyte blooms have been frequently observed along the South Carolina coastal zone. During the 2002, 2003, and 2004 sampling seasons, we investigated temporal fluctuations of algicidal bacteria abundance against raphidophycean flagellates (Heterosigma akashiwo, Chattonella subsalsa, and Fibrocapsa japonica) using the microplate most probable number (MPN) method in three Kiawah Island brackish stormwater detention ponds (K1, K2, and K75). Local axenic isolates of H. akashiwo, C. subsalsa, and F. japonica were obtained and their susceptibility to algicidal bacteria tested. A total of 195 algicidal bacterial strains were isolated from raphidophyte blooms in the study ponds, and 6 of them were identified at the genus level, and the taxonomic specificity of their algicidal activity was tested against local (pond) and nonlocal isolates of raphidophytes (3 species, 10 total strains). In the ponds, a consistent association was found between raphidophyte bloom development and an increase in bacteria algicidal to the bloom species. In 12 of 15 cases, bloom decline followed the increase in algicidal bacteria to maximum abundances. Although variability was found in the taxonomic specificity of the algicidal bacteria effect (i.e. the number of raphidophyte species affected by a particular bacteria strain) and raphidophyte susceptibility (i.e. the number bacteria strains affecting a particular raphidophyte species), a toxic effect was always found when strains of a raphidophyte species were exposed to algicidal bacteria isolated from a bloom caused by that same species. The results suggest that algicidal bacteria may be an important limiting factor in raphidophyte bloom sustenance and can promote bloom decline in brackish lagoonal eutrophic estuaries.  相似文献   

12.
A series of experiments was conducted to examine effects of four strains of the estuarine dinoflagellate, Pfiesteria shumwayae, on the behavior and survival of larval and adult shellfish (bay scallop, Argopecten irradians; eastern oyster, Crassostrea virginica; northern quahogs, Mercenaria mercenaria; green mussels, Perna viridis [adults only]). In separate trials with larvae of A. irradians, C. virginica, and M. mercenaria, an aggressive predatory response of three strains of algal- and fish-fed P. shumwayae was observed (exception, algal-fed strain 1024C). Larval mortality resulted primarily from damage inflicted by physical attack of the flagellated cells, and secondarily from Pfiesteria toxin, as demonstrated in larval C. virginica exposed to P. shumwayae with versus without direct physical contact. Survival of adult shellfish and grazing activity depended upon the species and the cell density, strain, and nutritional history of P. shumwayae. No mortality of the four shellfish species was noted after 24 h of exposure to algal- or fish-fed P. shumwayae (strains 1024C, 1048C, and CCMP2089) in separate trials at ≤5 × 103 cells ml−1, whereas higher densities of fish-fed, but not algal-fed, populations (>7–8 × 103 cells ml−1) induced low (≤15%) but significant mortality. Adults of all four shellfish species sustained >90% mortality when exposed to fish-fed strain 270A1 (8 × 103 cells ml−1). In contrast, adult M. mercenaria and P. viridis exposed to a similar density of fish-fed strain 2172C sustained <15% mortality, and there was no mortality of A. irradians and C. virginica exposed to that strain. In mouse bioassays with tissue homogenates (adductor muscle, mantle, and whole animals) of A. irradians and M. mercenaria that had been exposed to P. shumwayae (three strains, separate trials), mice experienced several minutes of disorientation followed by recovery. Mice injected with tissue extracts from control animals fed cryptomonads showed no response. Grazing rates of adult shellfish on P. shumwayae (mean cell length ±1 standard error [S.E.], 9 ± 1 μm) generally were significantly lower when fed fish-fed (toxic) populations than when fed populations that previously had been maintained on algal prey, and grazing rates were highest with the nontoxic cryptomonad, Storeatula major (cell length 7 ± 1 μm). Abundant cysts of P. shumwayae were found in fecal strands of all shellfish species tested, and ≤45% of the feces produced viable flagellated cells when placed into favorable culture conditions. These findings were supported by a field study wherein fecal strands collected from field-collected adult shellfish (C. virginica, M. mercenaria, and ribbed mussels, Geukensia demissa) were confirmed to contain cysts of P. shumwayae, and these cysts produced fish-killing flagellated populations in standardized fish bioassays. Thus, predatory feeding by flagellated cells of P. shumwayae can adversely affect survival of larval bivalve molluscs, and grazing can be depressed when adult shellfish are fed P. shumwayae. The data suggest that P. shumwayae could affect recruitment of larval shellfish in estuaries and aquaculture facilities; shellfish can be adversely affected via reduced filtration rates; and adult shellfish may be vectors of toxic P. shumwayae when shellfish are transported from one geographic location to another.  相似文献   

13.
Sensory analyses were conducted to determine levels of consumer acceptability of Porphyra yezoensis, P. umbilicalis, and P. amplissima to select appropriate species for aquaculture development in Maine (USA). The subjects included children (n = 67) and adults (n = 84); the children participated in study design by helping to select the 9 point hedonic scale used in the affective sensory tests. Two substrates were used; Porphyra was baked in crackers and also used as a coating for popcorn. No significant differences (p > 0.5) in acceptability of one species over another were observed in either trial, which suggests that native Atlantic species of Porphyra such as P. amplissima and P. umbilicalis have developmental potential in foods for North American consumers. Fatty acids were analyzed in the taste test material and in freshly collected P. umbilicalis; eicosapentaenoic acid [EPA; 20:5 (n-3)] and palmitic acid were the most common fatty acids. Quantitative analysis of EPA determined that freshly collected (January 2005) P. umbilicalis contained 3.2 mg EPA g dry wt−1 (74 mg EPA 100 g fresh wt−1). This concentration is not high enough to make P. umbilicalis a primary source of daily omega-3 fatty acids, but the favorable n-3/n-6 ratio (2-3:1) in these species contributes to their nutritional value.  相似文献   

14.
Species within the class Raphidophyceae were associated with fish kill events in Japanese, European, Canadian, and U.S. coastal waters. Fish mortality was attributable to gill damage with exposure to reactive oxygen species (peroxide, superoxide, and hydroxide radicals), neurotoxins, physical clogging, and hemolytic substances. Morphological identification of these organisms in environmental water samples is difficult, particularly when fixatives are used. Because of this difficulty and the continued global emergence of these species in coastal estuarine waters, we initiated the development and validation of a suite of real‐time polymerase chain reaction (PCR) assays. Sequencing was used to generate complete data sets for nuclear encoded small‐subunit ribosomal RNA (SSU rRNA; 18S); internal transcribed spacers 1 and 2, 5.8S; and plastid encoded SSU rRNA (16S) for confirmed raphidophyte cultures from various geographic locations. Sequences for several Chattonella species (C. antiqua, C. marina, C. ovata, C. subsalsa, and C. verruculosa), Heterosigma akashiwo, and Fibrocapsa japonica were generated and used to design rapid and specific PCR assays for several species including C. verruculosa Hara et Chihara, C. subsalsa Biecheler, the complex comprised of C. marina Hara et Chihara, C. antiqua Ono and C. ovata, H. akashiwo Ono, and F. japonica Toriumi et Takano using appropriate loci. With this comprehensive data set, we were also able to perform phylogenetic analyses to determine the relationship between these species.  相似文献   

15.
Strong haemolytic activity was observed for extracts of 15 Fibrocapsa japonica strains collected from different global regions. The EC50 values ranged between 0.4 × 104 and 1.9 × 104 F. japonica cells ml−1. The relationship between the haemolytic activity observed in the cell extracts and the amount and nature of polyunsaturated fatty acids (PUFAs) was investigated. Between 7% and 89% of the haemolytic activity could be attributed to the amount and toxicity of the PUFAs C18:4n3 (OTA), C20:5n3 (EPA), and C20:4n6 (AA). However, the higher the haemolytic activity of a strain the more it appeared to be caused by haemolytic compounds other than the PUFA's. The EC50 of the extracts with the highest haemolytic activity strongly depended on light intensity and was in line with observations made on Chattonella marina.In the cell extracts of the strains studied brevetoxins were always below detection limits. For strains where 20–35% of the haemolytic activity was not caused by PUFAs, the concentration of these compounds was close to LC50 values reported for fish. Overall the haemolytic activity of the F. japonica strains was in the range of known harmful microalgae. Therefore, PUFAs in combination with potent light dependent haemolytic compounds could be a major cause of ichthyotoxicity observed during F. japonica blooms.  相似文献   

16.
In response to wildlife mortality including unexplained eared grebe (Podiceps nigricollis) die-off events in 1992 and 1994 and other mortality events including large fish kills, a survey was conducted for the presence of algal toxins in the Salton Sea. Goals of this survey were to determine if and when algal toxins are present in the Salton Sea and to describe the phytoplankton composition during those times. A total of 29 samples was collected for toxicity analysis from both nearshore and midlake sites visited biweekly from January to December 1999. Dinoflagellates and diatoms dominated most samples, but some were dominated by a prymnesiophyte (Pleurochrysis pseudoroscoffensis) or a raphidophyte (Chattonella marina). Several types of blooms were observed and sampled. The dinoflagellate Gyrodinium uncatenum formed an extensive, dense (up to 310000 cells ml–1) and long-lasting bloom during the winter in 1999. A coccolithophorid, Pleurochrysis pseudoroscoffensis, occurred at high densities in surface films and nearshore areas during the spring and summer of 1999. These surface films also contained high densities of one or two other species (an unidentified scrippsielloid, Heterocapsa niei, Chattonella marina). Localized blooms were also observed in the Salton Sea. An unknown small dinoflagellate reached high densities (110000 cells ml–1) inside Varner Harbor, and an unidentified species of Gymnodinium formed a dense (270000 cells ml–1) band along part of the southern shoreline during the summer. Three species known to produce toxins in other systems were found. Protoceratium reticulatum (=Gonyaulax grindleyi) and Chattonella marina were found in several samples taken during summer months, and Prorocentrum minimum was found in low densities in several samples. Extracts of most samples, including those containing known toxic species, showed a low level (<10% mortality across all concentrations) of activity in the brine shrimp lethality assay and were not considered toxic. All sample extracts tested in the mouse bioassay showed no activity. One sample extract taken from the bloom of the small dinoflagellate was highly active (100% mortality across all concentrations) in the brine shrimp lethality assay, but the active material could not be isolated. While dense algal blooms are common at the Salton Sea, no evidence gathered in this study suggests that algal toxins are present within phytoplankton cells; however, toxins actively excreted by cells may have been missed. Blooms of phytoplankton likely contribute to wildlife mortality at the Salton Sea. Possible mechanisms including intoxication due to ingestion of feathers in grebes and waterlogging caused by changes in surface tension are discussed.  相似文献   

17.
Changes in the fatty acid composition of docosahexaenoic acid (DHA)-producing Schizochytrium limacinum SR21 were investigated. The addition of cyanocobalamin, which is an active component of vitamin B12, decreased the content of odd-chain fatty acids such as pentadecanoic acid (C15:0) and heptadecanoic acid (C17:0). Cyanocobalamin may upregulate the cobalamin-dependent methylmalonyl-CoA mutase, which converts propionic acid to succinic acid, thereby decreasing the content of odd-chain fatty acids. The addition of p-toluic acid resulted in a decrease in docosapentaenoic acid (DPA, 22:5n-6) content and an increase in eicosapentaenoic acid (EPA, 20:5n-3) content in a dose-dependent manner. Two additional peaks of fatty acids, characterized as Δ4,7,10,14-eicosatetraenoic acid (20:4n-7) and Δ4,7,10,14-docosatetraenoic acid (22:4n-9), were detected.  相似文献   

18.
This study was designed to determine in vitro rates of biohydrogenation of dietary unsaturated fatty acids by a mixed population of rumen microbes. The four dietary fats [Alifet High-Energy® (AHE), Alifet-Repro® (AR), Megalac® (MG), and Energy Booster® (EB)] differ in method of preparation, fatty acid composition, or both of these factors. Dietary fats (20 mg) were incubated with 4 mL strained rumen fluid diluted with 16 mL of medium, 0.8 mL of reducing solution buffer, and 200 mg of a synthetic diet (370 g cellulose, 370 g starch, and 160 g casein per kg DM) at 37 °C. Total contents were collected after 0, 6, 12, 24, or 36 h and change in fatty acid content determined. Disappearance of oleic acid was minimal (0.05–0.20) in AR and MG but moderate (about 0.60) in AHE and EB after 36 h of incubation. Rate of biohydrogenation of linoleic and linolenic acids from AR were similar (0.025 ± 0.009 h−1) and 0.65 of these fatty acids remained intact after 36 h. Rate of biohydrogenation of linoleic acid was four times greater than for oleic acid (0.040 ± 0.013 h−1 versus 0.009 ± 0.002 h−1) in MG. Thus, 0.65 of the linoleic acid but only 0.20 of the oleic acid had disappeared from MG after 36 h. Trans-11 and trans-12 were the predominant trans-isomers in AHE and AR cultures whereas trans-9 and trans-10 were the predominant trans-isomers in EB and MG cultures. None of the dietary fats contained conjugated linoleic acid (CLA) but CLA was present in the incubation inoculum. The amount of CLA decreased with time but this was not affected by source of dietary fat. Most (0.90–0.95) of the long-chain fatty acids eicosapentaenoic (EPA) and docosahexaenoic (DHA) in AR remained after 36 h of incubation. Results demonstrate that biohydrogenation varied among fatty acids and among source of dietary fat and indicate that AR can be used to increase post-ruminal supply of linolenic, EPA and DHA.  相似文献   

19.
An Antarctic psychrotrophic bacterium, Shewanella livingstonensis Ac10, produces cis-5,8,11,14,17-eicosapentaenoic acid (EPA), a long-chain polyunsaturated fatty acid (LPUFA), as a component of membrane phospholipids at low temperatures. The EPA-less mutant generated by disruption of the EPA synthesis gene becomes cold-sensitive. We studied whether the cold sensitivity could be suppressed by supplementation of various LPUFAs. The EPA-less mutant was cultured at 6°C in the presence of synthetic phosphatidylethanolamines (PEs) that contained oleic acid at the sn-1 position and various C20 fatty acids with different numbers of double bonds from zero to five or cis-4,7,10,13,16,19-docosahexaenoic acid (DHA) at the sn-2 position. Mass spectrometric analyses revealed that all these fatty acids became components of various PE and phosphatidylglycerol species together with shorter partner fatty acids, indicating that large-scale remodeling followed the incorporation of synthetic PEs. As the number of double bonds in the sn-2 acyl chain decreased, the growth rate decreased and the cells became filamentous. The growth was restored to the wild-type level only when the medium was supplemented with phospholipids containing EPA or DHA. We found that about a half of DHA was converted into EPA. The results suggest that intact EPA is best required for cold adaptation of this bacterium.  相似文献   

20.
Farmed fish could substitute for marine capture fish as a source of fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) beneficial for human health; however, they require these compounds in their diets. In the present study on a model fish species, we modified the EPA/DHA biosynthesis pathway by overexpression of masu salmon Δ5-desaturase-like gene in zebrafish to increase its ability to synthesize EPA and DHA. Expression of this gene in transgenic fish fed a commercial diet and Artemia helped to improve their EPA content by 1.21-fold and DHA by 1.24-fold. In similar fish that were fed only Artemia the increments were 1.14-fold for EPA and 1.13-fold for DHA, compared with nontransgenic fish. In contrast, eicosatetraenoic acid content decreased, as it is a substrate of Δ5-desaturase, while the total lipid remained constant. The results demonstrated that masu salmon Δ5-desaturase is functional in zebrafish and can modify its fatty acid metabolic pathway. The technique could be applied to farmed fish to generate a nutritionally richer product for human consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号