首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Soluble MHC/peptide tetramers that can directly bind the TCR allow the direct visualization and quantitation of Ag-specific T cells in vitro and in vivo. We used HY-D(b) tetramers to assess the numbers of HY-reactive CD8+ T cells in HYTCR-transgenic mice and in naive, wild-type C57BL/6 (B6) mice. As expected, tetramer staining showed the majority of T cells were male-specific CD8+ T cells in female HY-TCR mice. Staining of B6 mice showed a small population of male-specific CD8+ T cells in female mice. The effect of administration of soluble MHC class I tetramers on CD8+ T cell activation in vivo was unknown. Injection of HY-D(b) tetramer in vivo effectively primed female mice for a more rapid proliferative response to both HY peptide and male splenocytes. Furthermore, wild-type B6 female mice injected with a single dose of HY-D(b) tetramer rejected B6 male skin grafts more rapidly than female littermates treated with irrelevant tetramer. In contrast, multiple doses of HY-D(b) tetramer did not further decrease graft survival. Rather, female B6 mice injected with multiple doses of HY-D(b) tetramer rejected male skin grafts more slowly than mice primed with a single injection of tetramer or irradiated male spleen cells, suggesting clonal exhaustion or anergy. Our data highlight the ability of soluble MHC tetramers to identify scarce alloreactive T cell populations and the use of such tetramers to directly modulate an Ag-specific T cell response in vivo.  相似文献   

2.
Natural development of diabetes in nonobese diabetic (NOD) mice requires both CD4 and CD8 T cells. Transgenic NOD mice carrying alphabeta TCR genes from a class I MHC (Kd)-restricted, pancreatic beta cell Ag-specific T cell clone develop diabetes significantly faster than nontransgenic NOD mice. In these TCR transgenic mice, a large fraction of T cells express both transgene derived and endogenous TCR beta chains. Only T cells expressing two TCR showed reactivity to the islet Ag. Development of diabetogenic T cells is inhibited in mice with no endogenous TCR expression due to the SCID mutation. These results demonstrate that the expression of two TCRs is necessary for the autoreactive diabetogenic T cells to escape thymic negative selection in the NOD mouse. Further analysis with MHC congenic NOD mice revealed that diabetes development in the class I MHC-restricted islet Ag-specific TCR transgenic mice is still dependent on the presence of the homozygosity of the NOD MHC class II I-Ag7.  相似文献   

3.
HLA class I tetramers have revolutionized the study of Ag-specific CD8+ T cell responses. Technical problems and the rarity of Ag-specific CD4+ Th cells have not allowed the potential of HLA class II tetramers to be fully realized. Here, we optimize HLA class II tetramer staining methods through the use of a comprehensive panel of HIV-, influenza-, CMV-, and tetanus toxoid-specific tetramers. We find rapid and efficient staining of DR1- and DR4-restricted CD4+ cell lines and clones and show that TCR internalization is not a requirement for immunological staining. We combine tetramer staining with magnetic bead enrichment to detect rare Ag-specific CD4+ T cells with frequencies as low as 1 in 250,000 (0.0004% of CD4+ cells) in human PBLs analyzed directly ex vivo. This ultrasensitive detection allowed phenotypic analysis of rare CD4+ T lymphocytes that had experienced diverse exposure to Ag during the course of viral infections. These cells would not be detectable with normal flow-cytometric techniques.  相似文献   

4.
Interactions between TCR and self-peptide/MHC complex play an important role in homeostasis and Ag reactivity of mature peripheral T cells. In this report, we demonstrate that the interactions between mature peripheral T cells and endogenous Ags have a negative impact on the maintenance of foreign Ag-specific T cells in an age-dependent manner. This is mediated by RAG-dependent secondary rearrangement of the TCR alpha-chain (receptor revision). The TCR revision in mature T cells is readily observed in mouse expressing transgenic TCR alpha-chain inserted into the physiological locus (knockin mouse) but not in conventional transgenic mouse with an identical TCR alpha-chain. Thus, our results suggest that under physiological conditions in which all TCR alpha-chains are susceptible to deletion by secondary rearrangement, TCR revision in mature peripheral T cells is an ongoing process in adult animals and contributes to age-dependent changes in T cell function and repertoire.  相似文献   

5.
Transfer of the alphabeta TCR genes into T lymphocytes will provide a means to enhance Ag-specific immunity by increasing the frequency of tumor- or pathogen-specific T lymphocytes. We generated an efficient alphabeta TCR gene transfer system using two independent monocistronic retrovirus vectors harboring either of the class II MHC-restricted alpha or beta TCR genes specific for chicken OVA. The system enabled us to express the clonotypic TCR in 44% of the CD4+ T cells. The transduced cells showed a remarkable response to OVA323-339 peptide in the in vitro culture system, and the response to the Ag was comparable with those of the T lymphocytes derived from transgenic mice harboring OVA-specific TCR. Adoptive transfer of the TCR-transduced cells in mice induced the Ag-specific delayed-type hypersensitivity in response to OVA323-339 challenge. These results indicate that alphabeta TCR gene transfer into peripheral T lymphocytes can reconstitute Ag-specific immunity. We here propose that this method provides a basis for a new approach to manipulation of immune reactions and immunotherapy.  相似文献   

6.
In this study, we suggest that CD8 levels on T cells are not static, but can change and, as a result, modulate CD8(+) T cell responses. We describe three models of CD8 modulation using novel weak-agonist (K1A) and super-agonist (C2A) altered peptide ligands of the HY smcy peptide. First, we used peripheral nonresponsive CD8(low) T cells produced after peripheral HY-D(b) MHC class I tetramer stimulation of female HY TCR transgenic and wild-type mice. Second, we used genetically lowered CD8(int) T cells from heterozygote CD8(+/0) mice. Finally, we used pre-existing nonresponsive CD8(low) T cells from male HY TCR transgenic mice. In CD8(low) and CD8(high) mice, presence of a lower level of CD8 greatly decreased the avidity of the peptide-MHC for HY TCR as reflected by avidity (K(D)) and dissociation constant (T(1/2)) measurements. All three models demonstrated that lowering CD8 levels resulted in the requirement for a higher avidity peptide-MHC interaction with the TCR to respond equivalently to unmanipulated CD8(high) T cells of the same specificity. Additionally, direct injections of wild-type HY-D(b) and C2A-D(b) tetramers into female HY TCR or female B6 mice induced a high frequency of peripheral nonresponsive CD8(low) T cells, yet C2A-D(b) was superior in inducing a primed CD8(+)CD44(+) memory population. The ability to dynamically modulate the size and responsiveness of an Ag-specific T cell pool by "CD8 tuning" of the T cell during the early phases of an immune response has important implications for the balance of responsiveness, memory, and tolerance.  相似文献   

7.
High avidity for antigen and diversity of T cell receptor (TCR) repertoire are essential for effective immunity against cancer. We have previously created a transgenic mouse strain with increased TCR avidity in a diverse T cell population. In this report, we show that strong alloreactive responses of transgenic T cells against targets with low MHC class I expression can be used for effective adoptive transfer of tumor immunity in vivo. Alloreactive transgenic T cells could be an effective therapeutic approach counteracting tumor evasion of the immune system.  相似文献   

8.
Application of tetrameric MHC class I-peptide complexes has significantly improved the monitoring of antigen-specific T cell immune responses in mouse models as well as in clinical studies. Especially MHC class I tetramer analysis of tumor-specific T cells in suspension or on thick vibratome sections from viable tissue has been proven extremely useful. Using the well-characterized mouse tyrosinase-related-protein-2 specific cytotoxic T cell (CTL) clone LP9, we now developed a method that allows for specific identification of T cells with MHC class I tetramers in 8 mum thick, chemically fixed cryosections. The protocol was validated in a murine influenza virus-infection model. Moreover, analysis of delayed type hypersensitivity (DTH) skin biopsies from melanoma patients vaccinated with peptide-loaded mature dendritic cells, revealed the presence and location of anti-tumor CTLs. The specificity of the CTLs detected in situ correlated with both the DTH challenge specificity and reactivity of cell suspensions derived from the same biopsies. Collectively, our data demonstrate that in situ MHC class I tetramer staining provides a valuable tool to reveal the presence and anatomical location of specific CTLs in frozen tissue following immune-based treatment strategies in cancer patients.  相似文献   

9.
Avidity of Ag recognition by tumor-specific T cells is one of the main parameters that determines the potency of a tumor rejection Ag. In this study we show that the relative efficiency of staining of tumor Ag-specific T lymphocytes with the corresponding fluorescent MHC class I/peptide multimeric complexes can considerably vary with staining conditions and does not necessarily correlate with avidity of Ag recognition. Instead, we found a clear correlation between avidity of Ag recognition and the stability of MHC class I/peptide multimeric complexes interaction with TCR as measured in dissociation kinetic experiments. These findings are relevant for both identification and isolation of tumor-reactive CTL.  相似文献   

10.
Detection of autoreactive T cells using MHC II tetramers is difficult because of the low affinity of their TCR. We have generated a class II tetramer using the IA(s) class II molecule combined with an autoantigenic peptide from myelin proteolipid protein (PLP; PLP(139-151)) and used it to analyze myelin PLP(139-151)-reactive T cells. Using monomers and multimerized complexes labeled with PE, we confirmed the specificity of the reagent by bioassay and flow cytometry. The IA(s) tetramers stimulated and stained the PLP(139-151)-specific 5B6 TCR transgenic T cells and a polyclonal cell line specific for PLP(139-151), but not a control T cell line specific for PLP(178-191). We used this reagent to optimize conditions to detect low affinity autoreactive T cells. We found that high pH ( approximately 8.0) and neuraminidase treatment enhances the staining capacity of PLP(139-151) tetramer without compromising specificity. Furthermore, we found that induction of calcium fluxing by tetramers in T cells may be used as a sensitive measure to detect autoreactive T cells with a low affinity. Taken together, the data show that the tetrameric reagent binds and stimulates PLP(139-151)-reactive T cells with specificity. This tetrameric reagent will be useful in studying the evolution of PLP(139-151)-specific repertoire in naive mice and its expansion during the autoimmune disease experimental autoimmune encephalomyelitis.  相似文献   

11.
Engagement of the Ag receptor on naive CD8+ T cells by specific peptide-MHC complex triggers their activation/expansion/differentiation into effector CTL. The frequency of Ag-specific CD8+ T cells can normally be determined by the binding of specific peptide-MHC tetramer complexes to TCR. In this study we demonstrate that, shortly after Ag activation, CD8+ T cells transiently lose the capacity to efficiently bind peptide-MHC tetramer complexes. This transient loss of tetramer binding, which occurs in response to naturally processed viral peptide during infection in vitro and in vivo, is associated with reduced signaling through the TCR and altered/diminished effector activity. This change in tetramer binding/effector response is likewise associated with a change in cell surface TCR organization. These and related results suggest that early during CD8+ T cell activation, there is a temporary alteration in both cell surface Ag receptor display and functional activity that is associated with a transient loss of cognate tetramer binding.  相似文献   

12.
Identifying and characterizing Ag-specific CD8+ T cells are central to the study of immunological memory. Although powerful strategies such as MHC tetramers and peptide-induced cytokine production assays exist for identifying Ag-specific CD8+ T cells, alternate strategies that are not dependent upon a priori knowledge of the immunodominant and subdominant antigenic epitopes, as well as the MHC background of the animal are of obvious utility. In this study, we present a transgenic mouse model that uses Cre-loxP recombination to permanently mark all activated CD8+ T cells with beta-galactosidase. We used the lymphocytic choriomeningitis virus infection model to track the dynamics of the antiviral CD8+ T cell responses. We show that in this transgenic mouse model system, all of the antiviral effector and memory CD8+ T cells are contained within the beta-gal-marked CD8+ T cell population.  相似文献   

13.
Antigen-specific blockade of T cells in vivo using dimeric MHC peptide   总被引:4,自引:0,他引:4  
Ag-specific immune tolerance in clinical organ transplantation is currently an unrealized but critical goal of transplant biology. The specificity and avidity of multimerized MHC-peptide complexes suggests their potential ability to modulate T cell sensitization and effector functions. In this study, we examined the ability of MHC-peptide dimers to modulate T cell function both in vitro and in vivo. Soluble MHC dimers induced modulation of surface TCR expression and inhibited T cell cytolytic activity at nanomolar concentrations in vitro. Furthermore, engagement of TCR by soluble dimers resulted in phosphorylation of the TCR zeta-chain and recruitment and phosphorylation of zeta-associated protein-70 to the signaling complex, the latter of which increased upon dimer cross-linking. Significantly, Ag-specific inhibition of an alloreactive TCR-transgenic T cell population in vivo resulted in consequent outgrowth of an allogeneic tumor. The prolonged Ag-specific suppression of expansion and/or effector function of cognate T cells in vivo suggests that soluble MHC dimers may be a means of inducing sustained Ag-specific T cell unresponsiveness in vivo.  相似文献   

14.
15.
Intestinal autoimmune diseases are thought to be associated with a breakdown in tolerance, leading to mucosal lymphocyte activation perhaps as a result of encounter with bacterium-derived Ag. To study mucosal CD8(+) T cell activation, tolerance, and polarization of autoimmune reactivity to self-Ag, we developed a novel (Fabpl(4x at -132)-OVA) transgenic mouse model expressing a truncated form of OVA in intestinal epithelia of the terminal ileum and colon. We found that OVA-specific CD8(+) T cells were partially tolerant to intestinal epithelium-derived OVA, because oral infection with Listeria monocytogenes-encoding OVA did not elicit an endogenous OVA-specific MHC class I tetramer(+)CD8(+) T cell response and IFN-gamma-, IL-4-, and IL-5-secreting T cells were decreased in the Peyer's patches, mesenteric lymph nodes, and intestinal mucosa of transgenic mice. Adoptive transfer of OVA-specific CD8(+) (OT-I) T cells resulted in their preferential expansion in the Peyer's patches and mesenteric lymph nodes and subsequently in the epithelia and lamina propria but failed to cause mucosal inflammation. Thus, CFSE-labeled OT-I cells greatly proliferated in these tissues by 5 days posttransfer. Strikingly, OT-I cell-transferred Fabpl(4x at -132)-OVA transgenic mice underwent a transient weight loss and developed a CD8(+) T cell-mediated acute enterocolitis 5 days after oral L. monocytogenes-encoding OVA infection. These findings indicate that intestinal epithelium-derived "self-Ag" gains access to the mucosal immune system, leading to Ag-specific T cell activation and clonal deletion. However, when Ag is presented in the context of bacterial infection, the associated inflammatory signals drive Ag-specific CD8(+) T cells to mediate intestinal immunopathology.  相似文献   

16.
Although both MHC class II/CD8α double-knockout and CD8β null mice show a defect in the development of MHC class I-restricted CD8(+) T cells in the thymus, they possess low numbers of high-avidity peripheral CTL with limited clonality and are able to contain acute and chronic infections. These in vivo data suggest that the CD8 coreceptor is not absolutely necessary for the generation of Ag-specific CTL. Lack of CD8 association causes partial TCR signaling because of the absence of CD8/Lck recruitment to the proximity of the MHC/TCR complex, resulting in suboptimal MAPK activation. Therefore, there should exist a signaling mechanism that can supplement partial TCR activation caused by the lack of CD8 association. In this human study, we have shown that CD8-independent stimulation of Ag-specific CTL previously primed in the presence of CD8 coligation, either in vivo or in vitro, induced severely impaired in vitro proliferation. When naive CD8(+) T cells were primed in the absence of CD8 binding and subsequently restimulated in the presence of CD8 coligation, the proliferation of Ag-specific CTL was also severely hampered. However, when CD8-independent T cell priming and restimulation were supplemented with IL-21, Ag-specific CD8(+) CTL expanded in two of six individuals tested. We found that IL-21 rescued partial MAPK activation in a STAT3- but not STAT1-dependent manner. These results suggest that CD8 coligation is critical for the expansion of postthymic peripheral Ag-specific CTL in humans. However, STAT3-mediated IL-21 signaling can supplement partial TCR signaling caused by the lack of CD8 association.  相似文献   

17.
Adhesive interactions are crucial to cell migration into inflammatory sites. Using murine lymphocytic choriomeningitis virus as an Ag model system, we have investigated expression and function of collagen-binding integrins, alpha(1)beta(1) and alpha(2)beta(1), on activated and memory T cells. Using this system and MHC tetramers to define Ag-specific T cells, we demonstrate that contrary to being VLAs, expression of alpha(1)beta(1) and alpha(2)beta(1) can be rapidly induced on acutely activated T cells, that expression of alpha(1)beta(1) remains elevated on memory T cells, and that expression of alpha(1)beta(1) parallels that of viral-specific effector CD8(+) T cells (defined by tetramer and IFN-gamma staining). In an adoptive transfer model, mAb-mediated blockade of these integrins on activated effector and memory T cells inhibited Ag-specific delayed-type hypersensitivity responses; similar decreased responses were seen upon transfer of alpha(1)-deficient activated/memory T cells. Thus, expression of alpha(1)beta(1) and alpha(2)beta(1) integrins on activated T cells is directly functionally important for generation of inflammatory responses within tissues. Finally, the inhibitory effect of alpha(1)beta(1) blockade on the delayed-type hypersensitivity response could be bypassed by direct injection of Ag-specific T cells to inflammatory sites, demonstrating for the first time in vivo that collagen-binding integrins are involved in leukocyte migration into tissues.  相似文献   

18.
T cell immune responses are regulated by the interplay between effector and suppressor T cells. Immunization with Ag leads to the selective expansion and survival of effector CD4(+) T cells with high affinity TCR against the Ag and MHC. However, it is not known if CD4(+)CD25(+) regulatory T cells (T(reg)) recognize the same Ag as effector T cells or whether Ag-specific TCR repertoire modification occurs in T(reg). In this study, we demonstrate that after a primary Ag challenge, T(reg) proliferate and TCR repertoire modification is observed although both of these responses were lower than those in conventional T cells. The repertoire modification of Ag-specific T(reg) after primary Ag challenge augmented the total suppressive function of T(reg) against TCR repertoire modification but not against the proliferation of memory CD4(+) T cells. These results reveal that T cell repertoire modification against a non-self Ag occurs in T(reg), which would be crucial for limiting excess primary and memory CD4(+) T cell responses. In addition, these studies provide evidence that manipulation of Ag-specific T(reg) is an ideal strategy for the clinical use of T(reg).  相似文献   

19.
Cytotoxic CD8+ T lymphocytes are activated upon the engagement of their Ag-specific receptors by MHC class I molecules loaded with peptides 8-11 amino acids long. T cell responses triggered by certain antigenic peptides are restricted to a limited number of TCR V beta elements. The precise role of the peptide in causing this restricted TCR V beta expansion in vivo remains unclear. To address this issue, we immunized C57BL/6 mice with the immunodominant peptide of the vesicular stomatitis virus (VSV) and several peptide variants carrying single substitutions at TCR-contact residues. We observed the expansion of a limited set of TCR V beta elements responding to each peptide variant. To focus our analysis solely on the TCR beta-chain, we created a transgenic mouse expressing exclusively the TCR alpha-chain from a VSV peptide-specific CD8+ T cell clone. These mice showed an even more restricted TCR V beta usage consequent to peptide immunization. However, in both C57BL/6 and TCR alpha transgenic mice, single amino acid replacements in TCR-contact residues of the VSV peptide could alter the TCR V beta usage of the responding CD8+ T lymphocytes. These results provide in vivo evidence for an interaction between the antigenic peptide and the germline-encoded complementarity-determining region-beta loops that can influence the selection of the responding TCR repertoire. Furthermore, only replacements at residues near the C terminus of the peptide were able to alter the TCR V beta usage, which is consistent with the notion that the TCR beta-chain interacts in vivo preferentially with this region of the MHC/peptide complex.  相似文献   

20.
Immunization of cancer patients is most effective in tumor-free conditions or in the presence of minimal residual disease. In the attempt to develop new strategies able to control tumor recurrence while allowing the development of protective immunity, we have investigated the immunogenic potential of two distinct vaccine formulations when provided alone or upon single and repeated treatment with chemotherapeutics drugs. Vaccine-induced T cell responses were first investigated by tracing Ag-specific T cell responses in mice bearing detectable frequencies of Ag-specific TCR transgenic CD4 and CD8 T cells. These studies indicated that immunization with peptide-pulsed dendritic cells and soluble Ag plus adjuvant elicited a comparable expansion and differentiation of CD4 and CD8 effector cells in the peripheral lymphoid tissues when provided alone or shortly after Doxorubicin or Melphalan administration. We also analyzed the potency of the combined vaccination in transgenic adenocarcinoma mouse prostate mice, which develop spontaneous prostate cancer. Dendritic cell-based vaccination elicited potent tumor-specific cytotoxic responses in mice bearing prostate intraepithelial neoplasia both in the absence and in the presence of Doxorubicin. Together our results indicate that Doxorubicin- or Melphalan-based chemotherapy and Ag-specific vaccination can be combined for adjuvant treatments of cancer patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号