首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adenylate and guanylate cyclase activities were confirmed in crude homogenates from rat peritoneal mast cells. Both enzyme activities were associated with the 105, 000 X g particulate fractions, but not detected in the supernatant fractions. The optimal pH for both cyclase activities was 8.2. Mn++ was essentially required for guanylate cylcase activity, while adenylate cyclase activity was observed in the presence of either Mg++ or Mn++. The apparent Km values of adenylate cyclase for Mn++-ATP and Mg++-ATP were 160 μM and 340 μM, respectively, whereas the value of guanylate cyclase for Mn++-GTP was 100 μM. Adenylate cyclase was activated by 10 mM NaF. However, both adenylate and guanylate cyclase activities were neither stimulated nor inhibited by the addition of various kinds of agents which stimulate or inhibit the release of histamine from mast cells.  相似文献   

2.
Adenylate cyclase activities were studied in porcine sperm in the presence and absence of Mn++ before and after incubation in vivo and in vitro. Incubation of sperm in vivo for 30 min increased the Mg++-stimulated adenylate cyclase activity from 35.1 pmoles cyclic AMP formed per mg protein per 10 min to 50.4 pmoles. The activity stimulated by Mg++ and Mn++ increased from 392 to 729 pmoles after 30 min of in vivo incubation. Activity after incubation in vivo for 120 min was not different from activity after 30 min. In vitro incubation of porcine sperm in Ca++-free Ringer-fructose resulted in no change, but incubation in oviductal and uterine flushings obtained from gilts soon after ovulation increased Mg++-stimulated activity by 24% and Mg++?+ Mn++-stimulated activity by 49%. In vitro incubations in preovulatory flushings plus follicular fluid or in bovine serum albumin also increased adenylate cyclase activity.  相似文献   

3.
Guanylate cyclase from crude homogenates of vegetative Dictyosteliumdiscoideum has been characterized. It has a pH optimum of 8.0, temperature optimum of 25°C and requires 1 mM dithiothreitol for optimal activity. It strongly prefers Mn++ to Mg++ as divalent cation, requires Mn++ in excess of GTP for detectable activity, and is inhibited by high Mn++ concentrations. It has an apparent Km for GTP of approximately 517 μM at 1 mM excess Mn++.The specific activity of guanylate cyclase in vegetative homogenates is 50–80 pmoles cGMP formed/min/mg protein. Most of the vegetative activity is found in the supernatant of a 100,000 x g spin (S100). The enzyme is relatively unstable. It loses 40% of its activity after 3 hours storage on ice. Enzyme activity was measured from cells that had been shaken in phosphate buffer for various times. It was found that the specific activity changed little for at least 8 hours. Cyclic AMP at 10?4 M did not affect the guanylate cyclase activity from crude homogenates of vegetative or 6 hour phosphate-shaken cells.  相似文献   

4.
These studies provide the first evidence that parathyroid hormone (PTH), calcitonin (CT), and insulin, all known effectors of bone cell metabolism, stimulate the activity of guanylate cyclase in osteogenic cells derived from fetal mouse calvarial mesenchyme. Adenylate cyclase activity was stimulated by PTH and epinephrine, but not by CT, the latter effect being consistent with an absence of osteoclastpprogenitor cells in this osteogenic mesenchyme. Adenylate cyclase activity was associated entirely with the particulate fraction of the cells while guanylate cyclase, as well as acid and alkaline phosphatase, were present in both soluble and particulate material. The activation of guanylate cyclase by hormones may provide a better basis for understanding the differentiation and regulation of osteogenic cells.  相似文献   

5.
Germ cells from the mouse testis possess both a particulate and a soluble form of adenylate cyclase (EC 4.6.1.1). Germ cell adenylate cyclase activity is Mn++ dependent and is not stimulable with either NaF or 5′guanylylimidodiphosphate. Both particulate and soluble adenylate cyclase specific activities increase as germ cells progress through their differentiative stages, but epididymal spermatozoa seem to lack a significant amount of soluble activity. Somatic cells of the seminiferous tubule possess only a membrane bound activity, which is Mg++ and Mn++ dependent, NaF and 5′guanylylimidodiphosphate stimulable. It is suggested that germ cell adenylate cyclases represent incomplete forms of the enzyme, devoid of regulative subunits.  相似文献   

6.
Chick embryo fibroblasts (CEF) transformed by the Schmidt-Ruppin strain of Rous sarcoma virus (RSV-SR) have decreased adenylate cyclase activity. In cells infected by a temperature-sensitive mutant of this virus (RSV-SR-T5), enzyme activity is near normal when the cells are grown at the non-permissive temperature (41°C) but decreases at the permissive temperature (36°). Adenylate cyclase activity decreases slowly over a 24 hr period to one half normal levels when CEF-RSV-SR-T5 are shifted from 41° to 36°C. The low enzyme activity in CEF-RSV-SR is not due to an alteration in the Km ATP or a change in the kinetics of Mg++ activation, and is not observed when the enzyme is assayed in the presence of NaF. We conclude that transformation by RSV-SR reduces adenylate cyclase activity by a different mechanism than the Bryan high-titer strain of RSV.  相似文献   

7.
Adenylate and guanylate cyclases were assayed in silkmoth fat body homogenates by measuring the conversion of [α-32P]nucleoside triphosphates to cyclic [32P]nucleotides. Adenylate cyclase was dependent on dithiothreitol, required either Mg2+ or Mn2+ for activity, was activated by NaF, and inhibited by triton X-100. Guanylate cyclase was not dependent on dithiothreitol, was strictly dependent upon Mn2+, unaffected by NaF, and activated by triton X-100. Both cyclases had pH optima near 8.0 and were located chiefly in the particulate fraction of homogenates. Activities of both cyclases were maintained or elevated during the larval-pupal transformation and, in contrast to cyclic nucleotide phosphodiesterases, showed little decline in the early diapausing pupa.  相似文献   

8.
A particulate adenylate cyclase was identified in the excitable ciliary membrane from Paramecium tetraurelia. MnATP was preferentially used as substrate, the Km was 67 μM, Vmax was 1 nmol cAMP.min?1.mg?1, a marked temperature optimum of 37°C was observed. Adenylate cyclase was not inhibited by 100 μM EGTA or 100 μM La3+, whereas under these conditions guanylate cyclase activity was abolished. Fractionation of ciliary membrane vesicles by a Percoll density gradient yielded two vesicle populations with adenylate cyclase activity. In contrast, calmodulin/Ca-dependent guanylate cyclase was associated with vesicles of high buoyant density only.  相似文献   

9.
Sperm from several invertebrates contained guanylate cyclase activity several-hundred-fold greater than that in the most active mammalian tissues; the enzyme was totally particulate. Activity in the presence of Mn2+ was up to several hundred-fold greater than with Mg2+ and was increased 3–10-fold by Triton X-100. Sperm from several vertebrates did not contain detectable guanylate cyclase. Sperm of both invertebrates and vertebrates contained roughly equal amounts of Mn2+-dependent adenylate cyclase activity; in invertebrate sperm, this enzyme was generally several hundred-fold less active than guanylate cyclase. Adenylate cyclase was particulate, was unaffected by fluoride, and was generally greater than 10-fold more active with Mn2+ than with Mg2+. Invertebrate sperm contained phosphodiesterase activities against 1.0 μm cyclic GMP or cyclic AMP in amounts greater than mammalian tissues. Fish sperm, which did not contain guanylate cyclase, had high phosphodiesterase activity with cyclic AMP as substrate but hydrolyzed cyclic GMP at a barely detectable rate. In sea urchin sperm, phosphodiesterase activity against cyclic GMP was largely particulate and was strongly inhibited by 1.0% Triton X-100. In contrast, activity against cyclic AMP was largely soluble and was weakly inhibited by Triton. The cyclic GMP and cyclic AMP contents of sea urchin sperm were in the range of 0.1–1 nmol/g. Sea urchin sperm homogenates possessed protein kinase activity when histone was used as substrate; activities were more sensitive to stimulation by cyclic AMP than by cyclic GMP.5  相似文献   

10.
Luminal brush border and contraluminal basal-lateral segments of the plasma membrane from the same kidney cortex were prepared. The brush border membrane preparation was enriched in trehalase and γ-glutamyltranspeptidase, whereas the basal-lateral membrane preparation was enriched in (Na+ + K+)-ATPase. However, the specific activity of (Na+ + K+)-ATPase in brush border membranes also increased relative to that in the crude plasma membrane fraction, suggesting that (Na+ + K+)-ATPase may be an intrinsic constituent of the renal brush border membrane in addition to being prevalent in the basal-lateral membrane. Adenylate cyclase had the same distribution pattern as (Na+ + K+)-ATPase, i.e. higher specific activity in basal-lateral membranes and present in brush border membranes. Adenylate cyclase in both membrane preparations was stimulated by parathyroid hormone, calcitonin, epinephrine, prostaglandins and 5′-guanylylimidodiphosphate. When the agonists were used in combination enhancements were additive. In contrast to the distribution of adenylate cyclase, guanylate cyclase was found in the cytosol and in basal-lateral membranes with a maximal specific activity (NaN3 plus Triton X-100) 10-fold that in brush border membranes. ATP enhanced guanylate cyclase activity only in basal-lateral membranes. It is proposed that guanylate cyclase, in addition to (Na+ + K+)-ATPase, be used as an enzyme “marker” for the renal basal-lateral membrane.  相似文献   

11.
Dictyostelium discoideum cells respond to chemoattractants by transient activation of guanylate cyclase. Cyclic GMP is a second messenger that transduces the chemotactic signal. We used an electropermeabilized cell system to investigate the regulation of guanylate cyclase. Enzyme activity in permeabilized cells was dependent on the presence of a nonhydrolysable GTP analogue (e.g., GTPγS), which could not be replaced by GTP, GDP, or GMP. After the initiation of the guanylate cyclase reaction in permeabilized cells only a short burst of activity is observed, because the enzyme is inactivated with a t1.2 of about 15 s. We show that inactivation is not due to lack of substrate, resealing of the pores in the cell membrane, product inhibition by cGMP, or intrinsic instability of the enzyme. Physiological concentrations of Ca2+ ions inhibited the enzyme (half-maximal effect at 0.3 μM), whereas InsP3 had no effect. Once inactivated, the enzyme could only be reactivated after homogenization of the permeabilized cells and removal of the soluble cell fraction. This suggests that a soluble factor is involved in an autonomous process that inactivates guanylate cyclase and is triggered only after the enzyme is activated. The initial rate of guanylate cyclase activity in permeabilized cells is similar to that in intact, chemotactically activated cells. Moreover, the rate of inactivation of the enzyme in permeabilized cells and that due to adaptation in vivo are about equal. This suggests that the activation and inactivation of guanylate cyclase observed in this permeabilized cell system is related to that of chemotactic activation and adaptation in intact cells. © 1996 Wiley-Liss, Inc.  相似文献   

12.
Guanylate cyclase activity decreased during the division phase of heat-shock synchronized Tetrahymena pyriformis, strain GL. However, when Ca2+ was removed by EGTA to negate the effects of the Ca2+-binding protein (calmodulin), which is required for the full activity of guanylate cyclase in this organism, no significant change in the enzymatic activity was observed throughout the cell cycle. On the other hand, the reduced guanylate cyclase activity at division phase was associated with a decreased level of calmodulin content. These results suggest that fluctuations in guanylate cyclase activity during the cell cycle would be dependent on the concentration of calmodulin.  相似文献   

13.
Summary The cytochemical localization of particulate guanylate cyclase and adenylate cyclase activities in rabbit platelets were studied after stimulation with various agents, at the electron microscope level. In the presence of platelet aggregating agents such as thrombin and ADP, the particulate reaction product of guanylate cyclase activity was detectable on plasma membrane and on membranes of the open canalicular system. In contrast, samples incubated with platelet-activating factor showed no activation of the cyclase activity. Atrial natriuretic factor stimulated the particulate guanylate cyclase. The ultracytochemical localization of this activated cyclase was the same as that of thrombin-or ADP-stimulated guanylate cyclase. Adenylate cyclase activity was studied in platelets incubated with prostaglandin E1 plus or minus insulin. The enzyme reaction product was found at the same sites where guanylate cyclase was detected. Therefore guanylate and adenylate cyclase activities do not seem to be preferentially localised in platelet membranes.  相似文献   

14.
Adenylate and guanylate cyclase activities were demonstrated in R3230AC rat mammary adenocarcinomas by electron microscopic cytochemistry. Adenylate (AC) and guanylate (GC) cyclases were detected on plasma membrane of tumor epithelial cells, but not on fibroblasts and endothelial cells in the perivascular space. Both AC and GC activities were enriched in tumor epithelial cells at the periphery of the tumor lobular parenchyma rather than in cells in central core of the lobular parenchyma. Furthermore, the tumor cell plasma membranes facing the connective tissue stroma were in paucity or devoid of either enzyme activity. These heterogeneous distributions of both AC and GC among tumor epithelia suggest that R3230AC epithelial cells in different parts of the tumor mass may vary significantly in their regulation of cellular physiology.  相似文献   

15.
Guanylate cyclase activity is present in both soluble and particulate fractions of homogenates of mouse cerebellum and retina. Soluble guanylate cyclases in cerebellum and retina have an apparent Km for GTP of approx 40 and 70 μM, respectively; are stimulated by Ca2+ and Mg2+ in the presence of low Mn2+; and do not respond to NaN3, NH2OH or detergent. The particulate guanylate cyclase found in brain has an apparent Km GTP of 237 7mu;M, is not stimulated by Ca2+ or Mg2+ in the presence of low Mn2+, but is stimulated by NaN3, NH2OH, and detergent. In particulate fractions of normal retina, guanylate cyclase has two apparent Km GTP values (42 and 225 μM); has higher activity at low concentrations of Mn2+ (0.5 mM) than at high concentrations (5.0 mM); is inhibited by Ca2+; and does not respond to NaN3, NH2OH, or detergent. Retinas essentially devoid of photoreceptor cells (from mice with photoreceptor dystrophy) have soluble guanylate cyclase activity which is similar to that in normal retina, but have only 4% as much particulate guanylate cyclase activity. This residual particulate guanylate cyclase has an apparent Km GTP value of 392 μM and other properties similar to particulate guanylate cyclase from brain. These data indicate the presence of three distinguishable guanylate cyclases in CNS: (1) a soluble enzyme present in both brain and retina: (2) a particulate enzyme which is also present in brain and in the inner or neural retina: and (3) another particulate enzyme which is apparently unique and confined to retinal photoreceptor cells.  相似文献   

16.
Human neutrophils were incubated with granulocyte-macrophage (GM)-CSF and examined for changes in second messenger systems. Twofold increases in cGMP but not cAMP were measured after 5 to 20 min with 100 U/ml GM-CSF. Guanylate cyclase activities in membrane and cytosol fractions were increased to the same extent whether measured in the presence of Mg2+ or Mn2+, or in the cytosol with Mg2+ + N-methyl-N'-nitro-N-nitroso-guanidine. Kinetic studies of the cytosol enzyme showed no changes in the Km values for Mg2+ and Mn2+dependent guanylate cyclase activities (0.91 and 0.022 mM, respectively), whereas Vm values were increased after treating intact cells with GM-CSF. Two peaks of guanylate cyclase activity were observed, one at 10 and another at 60 min after adding 100 U/ml GM-CSF, whereas only one peak at 5 min occurred with 1 U/ml. Adenylate cyclase activity was reduced by nearly 50% after adding 100 U/ml GM-CSF for 10 to 30 min. These effects were also seen in the presence of several hormonal and nonhormonal adenylate cyclase stimulators. In contrast, small increases in adenylate cyclase activity occurred after adding 1 U/ml GM-CSF. In experiments to examine the pathway of guanylate cyclase activation by GM-CSF, we observed no changes in inositol phosphates, intracellular calcium ion, or cytosolic protein kinase C. The augmentation of chemotactic peptide-induced superoxide production by GM-CSF concentrations, may be related to the effects of the higher levels of GM-CSF to stimulate late increases in guanylate cyclase or decreases in adenylate cyclase.  相似文献   

17.
Summary Plasma membranes isolated from Yoshida ascites hepatoma AH-130 by a modification of the method of T. K. Ray (Biochim. Biophys. Acta 196: 1, 1970), were subfractionated into three fractions having densities (d) 1.12, 1.14 and 1.16 by discontinuous sucrose density-gradient. Membrane subfractions were characterized by electron-microscopy, by assay of marker enzymes and by lipid composition. All subfractions appeared to be essentially free from whole mitochondria, lysosomes and nuclei. Subfraction d 1.16 had, the highest 5-nucleotidase, Mg++-ATPase and (Na++K+)-ATPase activities; cytochromec oxidase was undetectable in any fraction and glucose-6-phosphatase was measurable only in fraction d 1.14. Adenylate cyclase had the highest activity in fractions d 1.14 and 1.16. Cyclic AMP phosphodiesterase was nearly equally distributed in the fractions. Adenylate, cyclase, 5-nucleotidase and Mg++-ATPase activities of tumor membrane were lower with respect to liver plasma membrane, while cyclic AMP phosphodiesterase and (Na++K+)-ATPase were found to have similar activities in the two membrane preparations. With respect to liver membrane, hepatoma membrane contained a higher amount of glycolipids and a higher amount of phospholipids accounted for mainly, by sphingomyelin, phosphatidylserine and phosphatidic acid. The possible significance of the decrease of adenylate activity in the hepatoma membrane is briefly discussed.  相似文献   

18.
Guanylate cyclase has been purified 60-fold from cell extracts of the bacterium Caulobacter crescentus. It has a molecular weight of approximately 140,000 and is dependent upon Mn2+ for activity. Enzymic activity is unaffected by cyclic AMP, cyclic GMP or N6,O2′-dibutyryl cyclic AMP but is stimulated by N2,O2′-dibutyryl cyclic GMP. The partially purified preparation of guanylate cyclase does not contain detectable adenylate cyclase activity.  相似文献   

19.
Adrenal steroid hormones with glucocorticoid activity increase the uptake of Zn++ in HeLa cell cultures. On the basis of the level of Zn++ accumulation induced, steroid hormones can be classified into four groups: (a) optimal inducers (e.g., hydrocortisone and prednisolone); (b) suboptimal inducers (e.g., aldosterone and corticosterone); (c) anti-inducers (e.g., progesterone and 17 α-methyl testosterone) which competitively inhibit induction by optimal inducers; and (d) non-inducers (e.g., cortisone and pregnenolone) which neither induce nor inhibit the steroid-mediated increase in Zn++ uptake. The ability of an anti-inducer to block the effects of optimal inducers is not the result of inhibition of steroid uptake or an effect on general protein synthesis. Optimal inducers do not increase adenyl cyclase activity of HeLa cells nor can the hormone effects on Zn++ uptake be reproduced by 3'-5' cyclic AMP. The prednisolone-induced enhancement of Zn++ uptake is gradually lost over two or three days following removal of the hormone. Uptake of Zn++ by HeLa cells is not altered by a decrease of sodium concentration in the medium nor by changes in medium osmolarity. The uptake mechanism is not affected by subjecting intact cells to proteolytic enzymes; however, if cells are disrupted the hormone-mediated increase in Zn++ accumulation is lost. The Zn++ taken up by HeLa cells in the presence or absence of hormone is primarily cytoplasmic in localization and appears to be distributed in a multicompartmental system.  相似文献   

20.
J A Cherner  G Singh  L Naik 《Life sciences》1990,47(7):669-677
The present study examined the effect of atrial natriuretic factor (ANF) on cGMP generation by dispersed chief cells from guinea pig stomach. ANF caused a rapid dose-dependent increase in cGMP, a 7-fold increase in cGMP caused by 1 microM ANF, with or without 3-isobutyl-1-methylxanthine present. Methylene blue reduced cGMP in response to nitroprusside but not ANF. Guanylate cyclase activity of a chief cell membrane fraction doubled in response to ANF, but was not affected by nitroprusside. ANF had no effect on guanylate cyclase activity of the soluble fraction of lysed chief cells. Dose-response curves for whole cell cGMP production and membrane guanylate cyclase activity in response to ANF were closely related. These data indicate that ANF increases chief cell cGMP production by activating particulate guanylate cyclase, providing functional evidence that chief cells possess surface membrane receptors for ANF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号