首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The vascular response of the tail to local warming was investigated in urethan-anesthetized rats whose colonic temperature was maintained at 39.5 degrees C with an intravenous thermode at an ambient temperature of 23 degrees C. The tail, covered with thin latex tubing, was immersed in temperature-controlled water initially kept at 35 degrees C. The tail was warmed by raising the water bath temperature from 35 to 44 degrees C at a constant rate. Tail blood flow (BF), mean arterial blood pressure (BP), and tail skin temperature (Tsk) were measured before and during the local warming. Tail vascular conductance (VC) was computed as 100 x tail BF/BP. When Tsk exceeded 37 degrees C, tail BF and VC significantly decreased from the levels at Tsk of 35 degrees C, and significant reductions in tail BF and VC occurred until Tsk reached 42 degrees C. Surgical deafferentation of the tail, chemical sympathectomy with 6-hydroxydopamine (100 mg/kg), and alpha-blockade with phentolamine (7 or 40.1-45.5 mg/kg) or phenoxybenzamine (5 mg/kg) failed to stop the decrease in tail BF and VC during the local warming. These results suggest that a reflex via the central nervous system and the alpha-adrenergic sympathetic nervous system is not indispensable for heat-induced vasoconstriction (HIVC). It is therefore assumed that, at least in the rat's tail, HIVC predominantly originates from a local vascular response to high temperature.  相似文献   

2.
The relationship between time of heating and temperature has been investigated for necrosis resulting in the loss of distal vertebrae in the rat tail. The study was made in both normal conditions and with the blood supply to the tail occluded. In normal conditions there was a transition in the isoeffect relationship close to 42.5 degrees C. Above this temperature a 1 degree C change was equivalent to a change in heating time by a factor of 1.95 +/- 0.01; below 42.5 degrees C the factor increased to 8.1 +/- 0.3. When the tail blood supply was occluded by a clamp the factor was 1.86 +/- 0.01 at temperatures above 42 degrees C and the tissue was considerably more sensitive to hyperthermia. The factor decreased to 1.3 +/- 0.01 at lower temperatures so that the difference in sensitivity between normal and clamped tissue markedly increased with increasing heating time. The results are interpreted in terms of decreased pH resulting from occlusion of the blood supply which renders the tissue more sensitive. The transition in the isoeffect relationship for normal tails is thought to result from the induction of thermal tolerance and is eliminated when the blood supply is occluded. The result is clearly relevant to the heat treatment of regions of tumours with poor blood supply.  相似文献   

3.
The changes in ice nucleation activity of transformed Ina+ Escherichia coli K12 after infection with T4D bacteriophage have been examined. Within 2 min after infection class A nucleation activity (measured at -4 degrees C) fell about 100-1000-fold whilst class B (measured at -5.5 degrees C) and class C (measured at -9 degrees C) nucleation activities increased 50-100-fold and then rapidly decreased. These changes also occurred after interaction with T4D ghost particles or T4D 11-/12- particles. Since ghost particles lack DNA and 11-/12- particles lack short tail fibres, the T4D particles appear to be exerting their effect by the attachment of the phage long tail fibres to the cell. The changes were not influenced by the addition of chloramphenicol.  相似文献   

4.
The vasomotor response of the tail of the albino rat to total-body heating and cooling was studied by skin-temperature recording and plethysmography with the tail at 25 degrees C air temperature. Tail vasodilation started at core temperatures lightly above 37 degrees C and increased to a core temperature up to about 39 degrees C. During cooling of warm rats, tail vasoconstriction started at significantly higher levels of core temperature than the values at which vasodilation appeared when the rat was warmed.  相似文献   

5.
The effect of temperature on the length of the tail of the myosin molecule has been studied by negative staining of molecules immobilized on carbon substrates at different temperatures. In buffers containing chloride as the principal anion, tail length was approximately constant up to 25 degrees C. Above this temperature, it shortened linearly with increasing temperature up to 42 degrees C, the highest temperature studied in this solvent. The amount of shortening per degree C was about 1.2 nm. A similar amount of shortening per degree C was seen in acetate-containing buffers up to 50 degrees C, but in this case it did not begin until the temperature exceeded about 40 degrees C. A large fraction of the observed shortening was localized in a region that lies roughly between the two positions in the tail where proteolysis results in production of short or long subfragment-2. Frequently, the tail had a different appearance in this region from elsewhere and could sometimes be seen to split into two strands that were separate but coiled around one another.  相似文献   

6.
Mendoza JA  Dulin P  Warren T 《Cryobiology》2000,41(4):319-323
The chaperonins GroEL and GroES were shown to facilitate the refolding of urea-unfolded rhodanese in an ATP-dependent process at 25 or 37 degrees C. A diminished chaperonin activity was observed at 10 degrees C, however. At low temperature, GroEL retains its ability to form a complex with urea-unfolded rhodanese or with GroES. GroEL is also able to bind ATP at 10 degrees C. Interestingly, the ATPase activity of GroEL was highly decreased at low temperatures. Hydrolysis of ATP by GroEL was 60% less at 10 degrees C than at 25 degrees C. We conclude that the reduced hydrolysis of ATP by GroEL is a major but perhaps not the only factor responsible for the diminished chaperonin activity at 10 degrees C. GroEL may function primarily at higher temperatures in which the ability of GroEL to hydrolyze ATP is not compromised.  相似文献   

7.
The pigmentation pattern of Alligator mississippiensis was examined. The number of white stripes on the dorsal side of embryos (stages 21-28) and hatchlings from eggs incubated at 30 degrees C (100% females) and 33 degrees C (100% males) was recorded. Total length, nape-rump length and tail length were recorded for each embryo and hatchling. The number of white stripes was affected by incubation temperature but not sex; hatchlings incubated at 33 degrees C had two more white stripes than those at 30 degrees C, despite being the same length. Five female hatchlings produced at 33 degrees C by manipulation of the temperature, had the same number of stripes as males that developed under the same incubation temperatures. The appearance of the pigmentation was accelerated in embryos incubated at 33 degrees C, occurring eight days earlier than at 30 degrees C. At the time just before the first signs of pigment deposition, embryos from 33 degrees C were longer than those at 30 degrees C. If the stripe formation is size dependent this explains why hatchlings at 33 degrees C have more stripes than hatchlings from 30 degrees C. The mechanism that produces the stripe patterns is unknown. We describe key elements a pattern formation mechanism must possess to produce such stripes and suggest a possible mechanism, based on cell movement driven by chemotaxis. We apply the mathematical model to dorsal patterning on A. mississippiensis. We show how length at pattern formation is the prime factor in determining stripe number and how the pattern can be formed in the observed anterior-posterior sequence. We present numerical simulations and show that the qualitative behaviour is consistent with the experimental results.  相似文献   

8.
In cold defense and fever, activity increases in sympathetic nerves supplying both tail vessels and interscapular brown adipose tissue (iBAT). These mediate cutaneous vasoconstrictor and thermogenic responses, respectively, and both depend upon neurons in the rostral medullary raphé. To examine the commonality of brain circuits driving these two outflows, sympathetic nerve activity (SNA) was recorded simultaneously from sympathetic fibers in the ventral tail artery (tail SNA) and the nerve to iBAT (iBAT SNA) in urethane-anesthetized rats. From a warm baseline, cold-defense responses were evoked by intermittently circulating cold water through a water jacket around the animal's shaved trunk. Repeated episodes of trunk skin cooling decreased core (rectal) temperature. The threshold skin temperature to activate iBAT SNA was 37.3 +/- 0.5 degrees C (n = 7), significantly lower than that to activate tail SNA (40.1 +/- 0.4 degrees C; P < 0.01, n = 7). A fall in core temperature always strongly activated tail SNA (threshold 38.3 +/- 0.2 degrees C, n = 7), but its effect on iBAT SNA was absent (2 of 7 rats) or weak (threshold 36.9 +/- 0.1 degrees C, n = 5). The relative sensitivity to core vs. skin cooling (K-ratio) was significantly greater for tail SNA than for iBAT SNA. Spectral analysis of paired recordings showed significant coherence between tail SNA and iBAT SNA only at 1.0 +/- 0.1 Hz. The coherence was due entirely to the modulation of both signals by the ventilatory cycle because it disappeared when the coherence spectrum was partialized with respect to airway pressure. These findings indicate that independent central pathways drive cutaneous vasoconstrictor and thermogenic sympathetic pathways during cold defense.  相似文献   

9.
The incubation of zymosan, endotoxin, or immune aggregates with normal human serum activates a factor which induces release of histamine from autologous basophils. The reaction can be divided into two steps: in the first, complement must be activated and in the second, the histamine-releasing factor interacts with basophils. The generation of histamine-releasing activity in serum occurs at 17 to 37 degrees C but not at 0 degrees C, is inhibited by heating the serum at 56 degrees C for 30 min, or by the addition of EDTA to the serum. Once generated, the histamine-liberating activity is stable to heating at 56 degrees C for 30 min. Gel filtration of the activated serum demonstrated that this factor eluted in the same region as a factor with chemotactic activity. Both factors have a molecular weight of about 16,000 daltons and their activities were inhibited by antibody to human C5. This is therefore a pathway for histamine release by C5a where the activation of the basophil is unrelated to the membrane bound IgE.  相似文献   

10.
The effects of acute and developmental temperature on maximum burst swimming speed, body size, and myofibrillar ATPase activity were assessed in tadpoles of the Pacific tree frog, Hyla regilla. Tadpoles from field-collected egg masses were reared in the laboratory at 15 degrees (cool) and 25 degrees C (warm). Body size, maximum burst swimming speed from 5 degrees to 35 degrees C, and tail myofibrillar ATPase activity at 15 degrees and 25 degrees C were measured at a single developmental stage. Burst speed of both groups of tadpoles was strongly affected by test temperature (P<0. 001). Performance maxima spanned test temperatures of 15 degrees -25 degrees C for the cool group and 15 degrees -30 degrees C for the warm group. Burst speed also depended on developmental temperature (P<0.001), even after accounting for variation in body size. At most test temperatures, the cool-reared tadpoles swam faster than the warm-reared tadpoles. Myofibrillar ATPase activity was affected by test temperature (P<0.001). Like swimming speed, enzyme activity was greater in the cool-reared tadpoles than in the warm-reared tadpoles, a difference that was significant when assayed at 15 degrees C (P<0. 01). These results suggest a mechanism for developmental temperature effects on locomotor performance observed in other taxa.  相似文献   

11.
The responses of tail skin and colonic temperatures of female rats to ambient temperatures of 20, 22, 24, 26, 28, and 30 degrees C were measured. Within this range, colonic temperature was stable while tail skin temperature increased linearly with increasing ambient temperature. Administration of the beta-adrenergic agonist, d,l-isoproterenol, at 10.0, 25.0, and 62.5 micrograms/kg, sc, at each ambient temperature was accompanied by increases in tail skin and colonic temperatures that were dependent on both the dose of isoproterenol administered and the ambient temperature. The integrated responses of tail skin temperature following administration of the three doses of isoproterenol were maximal at an ambient temperature of 26 degrees C while the integrated responses of colonic temperature were maximal at 30 degrees C. The results suggest that tests of beta-adrenergic responsiveness using this technique should be performed at an ambient temperature of 26 degrees C for maximal sensitivity.  相似文献   

12.
Bauerle KT  Kamau E  Grove A 《Biochemistry》2006,45(11):3635-3645
The Saccharomyces cerevisiae high-mobility group protein HMO1 is composed of two DNA-binding domains termed box A and box B, of which only box B is predicted to adopt a HMG fold, and a lysine-rich C-terminal extension. To assess the interaction between individual domains and their contribution to DNA binding, several HMO1 variants were analyzed. Using circular dichroism spectroscopy, thermal stability was measured. While the melting temperatures of HMO1-boxA and HMO1-boxB are 57.2 and 47.2 degrees C, respectively, HMO1-boxBC, containing box B and the entire C-terminal tail, melts at 46.1 degrees C, suggesting little interaction between box B and the tail. In contrast, full-length HMO1 exhibits a single melting transition at 47.9 degrees C, indicating that interaction between box A and either box B or the tail destabilizes this domain. As HMO1-boxAB, lacking only the lysine-rich C-terminal segment, exhibits two melting transitions at 46.0 and 63.3 degrees C, we conclude that the destabilization of the box A domain seen in full-length HMO1 is due primarily to its interaction with the lysine-rich tail. Determination of DNA substrate specificity using electrophoretic mobility shift assays shows unexpectedly that the lysine-rich tail does not increase DNA binding affinity but instead is required for DNA bending by full-length HMO1; HMO1-boxBC, lacking the box A domain, also fails to bend DNA. In contrast, both HMO1 and HMO1-boxAB, but not the individual HMG domains, exhibit preferred binding to constrained DNA minicircles. Taken together, our data suggest that interactions between box A and the C-terminal tail induce a conformation that is required for DNA bending.  相似文献   

13.
We have examined the interaction of photoperiod and temperature in regulating the parr-smolt transformation and its endocrine control. Atlantic salmon juveniles were reared at a constant temperature of 10 degrees C or ambient temperature (2 degrees C from January to April followed by seasonal increase) under simulated natural day length. At 10 degrees C, an increase in day length [16 h of light and 8 h of darkness (LD 16:8)] in February accelerated increases in gill Na(+)-K(+)-ATPase activity, whereas fish at ambient temperature did not respond to increased day length. Increases in gill Na(+)-K(+)-ATPase activity under both photoperiods occurred later at ambient temperature than at 10 degrees C. Plasma growth hormone (GH), insulin-like growth factor, and thyroxine increased within 7 days of increased day length at 10 degrees C and remained elevated for 5-9 wk; the same photoperiod treatment at 2 degrees C resulted in much smaller increases of shorter duration. Plasma cortisol increased transiently 3 and 5 wk after LD 16:8 at 10 degrees C and ambient temperature, respectively. Plasma thyroxine was consistently higher at ambient temperature than at 10 degrees C. Plasma triiodothyronine was initially higher at 10 degrees C than at ambient temperature, and there was no response to LD 16:8 under either temperature regimen. There was a strong correlation between gill Na(+)-K(+)-ATPase activity and plasma GH; correlations were weaker with other hormones. The results provide evidence that low temperature limits the physiological response to increased day length and that GH, insulin-like growth factor I, cortisol, and thyroid hormones mediate the environmental control of the parr-smolt transformation.  相似文献   

14.
PDGF stimulates transient phosphorylation of 180,000 dalton protein   总被引:1,自引:0,他引:1  
Cell-free extracts of platelet-derived growth factor (PDGF) treated, density-arrested, quiescent BALB/c-3T3 cells are capable of phosphorylating a 180,000 dalton protein (PP180). The phosphorylation of PP180 was observed in SDS polyacrylamide gel electrophoresis profiles of Nonidet P-40 solubilized cell preparations that had been incubated with [gamma-32P]ATP. When quiescent BALB/c-3T3 cell cultures were incubated at 37 degrees C with PDGF, phosphorylation of PP180 in cell extracts could be detected after a 3-min exposure of the intact cells to PDGF, which was maximal after 10-15 minutes and had diminished by 30-60 min. PDGF stimulation of PP180 phosphorylation also was observed in extracts of cells that had been incubated with PDGF at 4 degrees C; however, in contrast to PDGF exposure at 37 degrees C, the ability of cell extracts to phosphorylate PP180 did not decrease even after 4 hr of cell exposure to PDGF at 4 degrees C. When cells exposed to PDGF at 4 degrees C were transferred to 37 degrees C for 30 min, the ability of cell extracts to phosphorylate PP180 decreased to a nonstimulated level. After cells stimulated by PDGF showed a diminished ability to phosphorylate PP180, immediate restimulation with PDGF did not induce the ability to phosphorylate PP180. Incubation for 11 hr at 37 degrees C was required before readdition of PDGF allowed observable phosphorylation of PP180 in cell extracts, but maximum PDGF stimulation of the phosphorylation of PP180 was found after the cells were incubated for 24 hr in culture conditions. The amount of the stimulation of PP180 phosphorylation was dependent on the concentration of PDGF. The stimulation of DNA synthesis by PDGF was correlated to the phosphorylation of PP180. This phosphorylation activity was not observed in extracts of cells that had been treated with epidermal growth factor (EGF), somatomedin C, insulin, plasma, or fibroblast growth factor (FGF). This novel experimental approach allows the investigation of a PDGF-stimulated phosphorylation activity in relation to the cell cycle and growth regulation.  相似文献   

15.
Cold constricts cutaneous blood vessels by selectively increasing the activity of smooth muscle alpha2-adrenoceptors (alpha2-ARs). In mouse tail arteries, alpha2-AR constriction is mediated by alpha2A-ARs at 37 degrees C, whereas the cold-induced augmentation in alpha2-AR activity is mediated entirely by alpha2C-ARs. Cold causes translocation of alpha2C-ARs from the trans-Golgi to the plasma membrane, mediated by cold-induced activation of RhoA and Rho kinase. The present experiments analyzed the mechanisms underlying these responses. Mouse tail arteries were studied in a pressure myograph. Cooling the arteries (28 degrees C) caused a rapid increase in reactive oxygen species (ROS) in smooth muscle cells, determined by confocal microscopy of arteries loaded with the ROS-sensitive probes, dichlorodihydrofluorescein or reduced Mitotracker Red. The inhibitor of mitochondrial complex I rotenone (10 micromol/l), the antioxidant N-acetylcysteine (NAC; 20 mmol/l), or the cell-permeable mimic of superoxide dismutase MnTMPyP (50 micromol/l) did not affect vasoconstriction to alpha2-AR stimulation (UK-14304) at 37 degrees C but dramatically inhibited the response at 28 degrees C. Indeed, these ROS inhibitors abolished the cold-induced increase in alpha2-AR constrictor activity. NAC (20 mmol/l) or MnTMPyP (50 micromol/l) also abolished the cold-induced activation of RhoA in human cultured vascular smooth muscle cells and the cold-induced mobilization of alpha2C-ARs to the cell surface in human embryonic kidney 293 cells transfected with the receptor. The combined results suggest that cold-induced constriction is mediated by redox signaling in smooth muscle cells, initiated by mitochondrial generation of ROS, which stimulate RhoA/Rho kinase signaling and the subsequent mobilization of alpha2C-ARs to the cell surface. Altered activity of ROS may contribute to cold-induced vasospasm occurring in Raynaud's phenomenon.  相似文献   

16.
Mitogenic factor from BCG-sensitized cells stimulated with antigen (PPD) was found to have a m.w. between 20 and 25,000 daltons and an isoelectric point of about 7.5. The blastogenic activity of this factor was not affected by L-fucose or heating at 56 degrees C for up to 1 hr. Mitogenic factor obtained from supernatants of allogeneic cell mixtures (MLC-MF) on the other hand, had a m.w. at 15 to 18,000 daltons and an isoelectric point of 6.5. The blastogenic activity of MLC-MF was inhibited by 0.1 M L-fucose. The factor was stable at 56 degrees C for 1 hr. An antibody prepared against MLC-MF inhibited the MLC reaction as well as the activity of MLC-MF on non-committed cells. This antibody, however, did not affect the response of lymphocytes to PHA or PPD and had no suppressive effect on PPD-MF. The antibody was not cytotoxic and its suppressive activity in the MLC response could not be absorbed out by lymphoid cells indicating that it is probably directed against a lymphocyte activation product (MLC-MF) rather than membrane antigens. The chemical and immunologic differences exhibited by PPD-MF and MLC-MF indicate that these two lymphokines are distinct molecular entities.  相似文献   

17.
Viscoelastic (VE) and dynamic light scattering (DLS) analyses of fish (white croaker) myosin solutions were performed at myosin concentrations of 30 mg/mL for VE and 0.1 mg/mL for DLS at 0.6M KCl and pH 7.0 to clarify thermally induced gelation. The hydrodynamic radius R(h) considerably decreased around 30-35 degrees C. The shear modulus G was constant below 25 degrees C and increased by incubating the sample at 30 degrees C. G further increased as the temperature of the incubated sample decreased. The curves of G vs T for different time courses showed a sharp peak around 35 degrees C and a moderate peak around 60 degrees C in the heating process, while a stepwise increase in G was observed around 30 degrees C in the cooling process when the temperature was elevated to not more than 60 degrees C. No distinct stepwise change was observed once the temperature of the sample exceeded 60 degrees C. The absolute value of G strongly depended on the maximum elevated temperature and the incubation time at that temperature. The corresponding behavior of the viscosity eta was observed for each time course. Based on these results, the mechanism of thermally induced gelation of myosin solutions is discussed in view of S-S bridge formation in the head and tail portions and unwinding/rewinding of coiled-coil alpha-helices in the tail portion.  相似文献   

18.
The relationship between chymotrypsin-inhibitory and immunoenhancing activity of alpha-1-antichymotrypsin was studied. alpha-1-Antichymotrypsin was treated at 50 degrees C, 55 degrees C or 60 degrees C for 15 min. It was found that antichymotryptic activity was reduced by half when alpha-1-antichymotrypsin was heated at 55 degrees C and was not detected at all when heating was carried out at 60 degrees C. alpha-1-Antichymotrypsin which was heated at 60 degrees C did not form a complex with chymotrypsin, but became a substrate for chymotrypsin. The effect of native and heated alpha-1-antichymotrypsin on antibody response was studied in mice. alpha-1-Antichymotrypsin increased the number of anti-sheep erythrocytes antibody producing cells even when it was heated at 60 degrees C. Circular dichroism and single radial immunodiffusion were used to detect conformational changes. Circular dichroism in the region of side chain absorption showed that the intensities of the spectra at 296, 284, and 265 nm decreased with a rise in temperature from 50 to 60 degrees C. In single radial immunodiffusion analysis, alpha-1-antichymotrypsin did not form a halo after being heated at 60 degrees C. In conclusion, when alpha-1-antichymotrypsin was heated at 60 degrees C, the immunoenhancing activity remained intact while the antichymotryptic activity was lost with the conformational change.  相似文献   

19.
We have purified collagen from two distinct sources; the vertebrate, rat tail tendon and an invertebrate, sea urchin adult tissue, the peristome. The collagenous nature of the purification products was confirmed by amino acid compositional analysis. Both preparations had high contents of glycine and proline residues and hydroxyproline was also present. The total pyrrolidine (proline+hydroxyproline) content decreased from 17.9 mole% in rat tail collagen to 12.9 mole% in peristome collagen. Distinctly different circular dichroic spectra were measured for these collagens. Analyses of spectra, measured as a function of temperature, revealed distinct thermal denaturation profiles. The melting temperature for rat tail collagen was 38.5 degrees C, while the corresponding value for peristome collagen was significantly lower at 27 degrees C. A similar thermal denaturation profile was obtained for rat tail collagen in digestion experiments using a 41-kDa gelatinase activity, isolated from sea urchin eggs. These results identify structural differences between a typical, vertebrate type I fibrillar collagen and an echinoderm collagen which serves as a constituent of a mutable connective tissue. These differences may relate to the functional roles played by collagen in these distinctly different tissues.  相似文献   

20.
The major extracellular protease from Pseudomonas fluorescens strain AR-11 has been partially purified by a factor of 300 by a combination of DEAE-cellulose ion-exchange chromatography and gel filtration. The enzyme had a molecular weight of 38 400 and exhibited optimum activity with isoelectrically precipitated casein substrate at pH 6.5 with Km - 0.13 mM. The protease was strongly inhibited by a number of heavy metal ions at the 10 mM level and also inhibited by thiol agents, while 10 mM EDTA led to slight activation. Optimum activity was retained, amounting to 33% of the maximum activity at 4 degrees C and 72% at 20 degrees C. Heat inactivation studies in which the isolated protease was heated at high temperature before subsequent incubation at 35 degrees C with substrate showed that for 50% inactivation 25 s heating at 130 degrees C or 17 s at 140 degrees C of 8.5 s at 150 degrees C was requried. The combination of high stability to heat treatments and retention of considerable activity at low incubation temperatures indicates that such a protease might have considerable significance in the processing and subsequent storage of food and other products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号