首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding how disturbance shapes the dynamics of ecological systems is of fundamental importance in ecology. One emerging approach to revealing and appreciating disturbance effects involves examining disturbance-driven changes in the variability of ecological responses. Variability is rarely employed as a response variable to assess the influence of disturbance, but recent studies indicate that it can be an extremely sensitive metric, capturing differences obscured by averaging and conveying important ecological information about underlying causal processes. In this paper, we present a conceptual model to understand and predict the effects of disturbance on variability. The model estimates qualitative changes in variability by considering disturbance extent, frequency and intensity, as well as ecosystem recovery, and thereby captures not only the immediate effects of disturbance but also those that arise over time due to the biotic response to an event. We evaluate how well the model performs by comparing predictions with empirical results from studies examining a wide variety of disturbances and ecosystems, and discuss factors that may modify or even confound predictions. We include a concise guide to characterizing and detecting changes in variability, highlighting the most common and easily applied methods and conclude by describing several future directions for research. By considering variability as a response to disturbance, we gain another metric of fundamental system behaviour, an improved ability to identify organizing features of ecosystems and a better understanding of the predictability of disturbance-driven change – all critical aspects of assessing ecosystem response to disturbance.  相似文献   

2.
Houk P  Musburger C  Wiles P 《PloS one》2010,5(11):e13913

Background

Compared with a wealth of information regarding coral-reef recovery patterns following major disturbances, less insight exists to explain the cause(s) of spatial variation in the recovery process.

Methodology/Principal Findings

This study quantifies the influence of herbivory and water quality upon coral reef assemblages through space and time in Tutuila, American Samoa, a Pacific high island. Widespread declines in dominant corals (Acropora and Montipora) resulted from cyclone Heta at the end of 2003, shortly after the study began. Four sites that initially had similar coral reef assemblages but differential temporal dynamics four years following the disturbance event were classified by standardized measures of ‘recovery status’, defined by rates of change in ecological measures that are known to be sensitive to localized stressors. Status was best predicted, interactively, by water quality and herbivory. Expanding upon temporal trends, this study examined if similar dependencies existed through space; building multiple regression models to identify linkages between similar status measures and local stressors for 17 localities around Tutuila. The results highlighted consistent, interactive interdependencies for coral reef assemblages residing upon two unique geological reef types. Finally, the predictive regression models produced at the island scale were graphically interpreted with respect to hypothesized site-specific recovery thresholds.

Conclusions/Significance

Cumulatively, our study purports that moving away from describing relatively well-known patterns behind recovery, and focusing upon understanding causes, improves our foundation to predict future ecological dynamics, and thus improves coral reef management.  相似文献   

3.
Despite a long history of disturbance–recovery research, we still lack a generalizable understanding of the attributes that drive community recovery potential in seafloor ecosystems. Marine soft‐sediment ecosystems encompass a range of heterogeneity from simple low‐diversity habitats with limited biogenic structure, to species‐rich systems with complex biogenic habitat structure. These differences in biological heterogeneity are a product of natural conditions and disturbance regimes. To search for unifying attributes, we explore whether a set of simple traits can characterize community disturbance–recovery potential using seafloor patch‐disturbance experiments conducted in two different soft‐sediment landscapes. The two landscapes represent two ends of a spectrum of landscape biotic heterogeneity in order to consider multi‐scale disturbance–recovery processes. We consider traits at different levels of biological organization, from the biological traits of individual species, to the traits of species at the landscape scale associated with their occurrence across the landscape and their ability to be dominant. We show that in a biotically heterogeneous landscape (Kawau Bay, New Zealand), seafloor community recovery is stochastic, there is high species turnover, and the landscape‐scale traits are good predictors of recovery. In contrast, in a biotically homogeneous landscape (Baltic Sea), the options for recovery are constrained, the recovery pathway is thus more deterministic and the scale of recovery traits important for determining recovery switches to the individual species biological traits within the disturbed patch. Our results imply that these simple, yet sophisticated, traits can be effectively used to characterize community recovery potential and highlight the role of landscapes in providing resilience to patch‐scale disturbances.  相似文献   

4.
Tropical forest responses to climate and atmospheric change are critical to the future of the global carbon budget. Recent studies have reported increases in estimated above‐ground biomass (EAGB) stocks, productivity, and mortality in old‐growth tropical forests. These increases could reflect a shift in forest functioning due to global change and/or long‐lasting recovery from past disturbance. We introduce a novel approach to disentangle the relative contributions of these mechanisms by decomposing changes in whole‐plot biomass fluxes into contributions from changes in the distribution of gap‐successional stages and changes in fluxes for a given stage. Using 30 years of forest dynamic data at Barro Colorado Island, Panama, we investigated temporal variation in EAGB fluxes as a function of initial EAGB (EAGBi) in 10 × 10 m quadrats. Productivity and mortality fluxes both increased strongly with initial quadrat EAGB. The distribution of EAGB (and thus EAGBi) across quadrats hardly varied over 30 years (and seven censuses). EAGB fluxes as a function of EAGBi varied largely and significantly among census intervals, with notably higher productivity in 1985–1990 associated with recovery from the 1982–1983 El Niño event. Variation in whole‐plot fluxes among census intervals was explained overwhelmingly by variation in fluxes as a function of EAGBi, with essentially no contribution from changes in EAGBi distributions. The high observed temporal variation in productivity and mortality suggests that this forest is very sensitive to climate variability. There was no consistent long‐term trend in productivity, mortality, or biomass in this forest over 30 years, although the temporal variability in productivity and mortality was so strong that it could well mask a substantial trend. Accurate prediction of future tropical forest carbon budgets will require accounting for disturbance‐recovery dynamics and understanding temporal variability in productivity and mortality.  相似文献   

5.
Ecosystem Management in the Context of Large, Infrequent Disturbances   总被引:2,自引:1,他引:1  
Large, infrequent disturbances (LIDs) can have significant impacts yet seldom are included in management plans. Although this neglect may stem from relative unfamiliarity with a kind of event that rarely occurs in the experience or jurisdiction of individual managers, it may also reflect the assumption that LIDs are so large and powerful as to be beyond the ability of managers to affect. However, some LIDs can be affected by management, and for many of those that cannot be affected, the resilience or recovery of the system disrupted by the disturbance can be influenced to meet management goals. Such results can be achieved through advanced planning that allows for LIDs, whether caused by natural events, human activities, or a combination of the two. Management plans for LIDs may adopt a variety of goals, depending on the nature of the system and the nature of the anticipated disturbance regime. Managers can choose to influence (a) the system prior to the disturbance, (b) the disturbance itself, (c) the system after the disturbance, or (d) the recovery process. Prior to the disturbance, the system can be managed in ways that alter its vulnerability or change how it will respond to a disturbance. The disturbance can be managed through no action, preventive measures, or manipulations that can affect the intensity or frequency of the disturbance. Recovery efforts can focus on either managing the state of the system immediately after the disturbance or managing the ongoing process of recovery. This review of the management implications of LIDs suggests that management actions should be tailored to particular disturbance characteristics and management goals. Management actions should foster survival of residuals and spatial heterogeneity that promote the desired recovery pattern and process. Most importantly, however, management plans need to recognize LIDs and include the potential for such disturbances to occur. Received 14 July 1998; accepted 16 September 1998  相似文献   

6.
The macroinvertebrate faunal assemblages of 8 sites on three small streams in SE England were examined annually in spring between 1987 and 1993. Considerable ‘natural’ variability was observed in the sites superimposed over a background of low-intensity anthropogenic disturbance such as farming, quarrying, and urban influences. Landscape changes and activities in the catchment (saline drainage, removal of topsoil, pipeline crossings of streams) associated with the construction of the UK terminal for the Channel Tunnel, resulted in further temporary disturbance at some of the sites. Most changes in faunal composition were related to natural and anthropogenically induced modifications of the stream substrate. The response and recovery time of sites to disturbances was very variable and was related to the hydraulic and substrate characteristics of the stream bed, with least change and quickest recovery at sites with coarse substrates and high slope. Variations between years in the occurrence of taxa were generally more apparent with species data than with family data except where environmental change was great. Despite the observed differences in faunal composition the main elements of the fauna were fairly constant throughout the study period. Analyses of the data with biotic indices, the predictive RIVPACS system and ordination analyses have all shown clearly the annual variability of faunal parameters used to measure environmental quality. The study has shown that very basic rapid assessment techniques can provide insights into faunal responses to disturbance, especially if the work is long-term and that before authoritative statements concerning environmental impact can be made it is essential to have knowledge of the natural variation to be expected in streams of differing characteristics.  相似文献   

7.
Finite element (FE) model studies have made important contributions to our understanding of functional biomechanics of the lumbar spine. However, if a model is used to answer clinical and biomechanical questions over a certain population, their inherently large inter-subject variability has to be considered. Current FE model studies, however, generally account only for a single distinct spinal geometry with one set of material properties. This raises questions concerning their predictive power, their range of results and on their agreement with in vitro and in vivo values.  相似文献   

8.
Abstract. In this study, plant functional types are understood as groups of plants with similar biological traits displaying significant optima or maxima on a gradient plane of resource supply and disturbance intensity. The biological traits refer to expansion, vegetative regeneration, generative reproduction, dispersal and seed bank longevity. 129 vegetation samples were taken in an agricultural landscape in southwestern Germany, covering a wide range of terrestrial vegetation types – but with the exception of forests and wetlands. For each site, also soil data were recorded. Mean daily soil moisture was estimated with a simple model. Soil moisture, balanced nitrogen supply and available phosphorus were combined into a factor ‘resource supply’. In addition, disturbance intensity was estimated for each site. This factor was based on (1) frequency of disturbance, (2) disturbance depth below or above the soil surface, and (3) proportion of the area affected by a discrete disturbance event. 30 plant groups with similar biological characteristics resulted from a cluster analysis, based on a compilation of 19 biological traits for a regional species pool. Logistic regression on a gradient plane of disturbance intensity and resource supply yielded response curves for 28 groups. The dependent variable was defined as the probability of encountering all members of a group in a sample. 17 groups display a significant response curve on the gradient plane. Plants with a potential for long- range dispersal are concentrated on sites with low or high disturbance intensities (e.g. fallow land, fields, lawns). On sites with medium disturbance intensity (e.g. meadows) and low to medium resource supply, small-range dispersal predominates. There are no distinct trends concerning seed bank longevity. The potential for vertical and lateral expansion increases with decreasing disturbance intensity. Only at medium disturbance intensities does vertical expansion correlate positively with resource supply. Rapid detachment of daughter individuals occurs more often on productive sites than on less productive sites. Diversity of groups with similar biological traits is highest on sites with medium disturbance intensities.  相似文献   

9.
10.
11.
Temporal characteristics of migratory behavior in birds are usually studied at the species and population levels, and rarely at the individual level. Variations among species and populations of the seasonal onset of migratory behavior have been widely investigated, but very little is known about its daily organization or whether birds are conservative in their behavior. The determination of intra- and inter-individual variability is important for the study of genetic variations and can reveal the existence of different adaptation capacities within populations. This laboratory study analyzed intra- and inter-individual variability of daily initiation and time course of nocturnal restlessness in partial-migrant European quail (Coturnix coturnix coturnix). Thirty-five quail were selected randomly from a captive stock, and their spring activity was recorded under natural daylenghs. Eighteen of the thirty-five quail presented behavioral profiles of migrant birds. Migrant birds initiated their nocturnal activity punctually, and the time courses of the nocturnal activity of 88% of them revealed intra-individual stability over six consecutive nights. All birds initiated their nocturnal activity after sunset and civil twilight, and they were more active at the beginning than the middle or end of the night, suggesting that their drive to migrate could be synchronized with particular skylight conditions. For the first time, stable individual profiles in the daily time course of migratory restlessness are shown. These results support previous findings concerning biological rhythms of quail and raise questions concerning the timing of migratory behavior.  相似文献   

12.
In 1998, seawater temperature anomalies led to unprecedented levels of coral bleaching on reefs worldwide. We studied the direct effects of this thermal event on benthic communities and its indirect effects on their associated coral reef fish communities at a group of remote reefs off NW Australia. Long‐term monitoring of benthic and fish assemblages on these reefs allowed us to compare the responses of these communities to coral bleaching using a data series that included 4 years before, and 6 years following, this bleaching event. While bleaching mortality was evident to >30 m depth, it was patchy among the shallower survey sites with decreases in live coral cover ranging from 30% to 90% across seven surveyed locations Within 2 years of the bleaching, hard coral recovery had begun at all sites and by 2003 reef‐wide coral cover had increased to ~39% of its preimpact levels. We exploited this pattern of differential survival of corals among sites, the associated changes in these benthic communities, and their patterns of recovery, to better understand links between benthic community dynamics and their associated fish communities. Temporal changes in the resident fish communities strongly reflected the differential shifts in the benthic communities, but were lagged by 12–18 months. Five years after the bleaching event, the fish communities on five of the seven surveyed locations showed evidence of recovery, however, none had regained their preimpact structures. Analyses of these communities by taxonomic family revealed a range of responses to the disturbance reflective of their life‐histories and trophic and habitat affiliations. The slow but recognizable recovery of this isolated reef system has parallels with other relatively isolated systems that displayed resilience to the 1998 bleaching event, e.g. the Chagos archipelago, but it also contrasts sharply with low levels of resilience documented in other isolated reef systems subject to the same disturbance, e.g. the Seychelles. In this context, our results highlight the significant knowledge gaps remaining in understanding the resilience of these ecosystems to disturbance.  相似文献   

13.
A biological attack would present an unprecedented challenge for local, state, and federal agencies, the military, the private sector, and individuals on many fronts, ranging from vaccination and treatment to prioritization of cleanup actions to waste disposal. To prepare for recovery from this type of incident, the Seattle Urban Area Security Initiative (UASI) partners collaborated with military and federal agencies to develop a regional recovery framework. The goal was to identify key information that will assist policymakers and emergency managers in shortening the timeline for recovery and minimizing the economic and public health impacts of a catastrophic anthrax attack. Based on discussions in workshops, tabletop exercises, and interviews with local, state, federal, military, and private sector entities responsible for recovery, the authors identified goals, assumptions, and concepts of operation for various areas to address critical issues the region will face as recovery progresses. Although the framework is specific to a catastrophic, wide-area biological attack using anthrax, it was designed to be flexible and scalable so it could also serve as the recovery framework for an all-hazards approach in other regions and jurisdictions. Benefits from this process include enhanced coordination and collaboration across agencies, a more thorough understanding of the anthrax threat, an opportunity to proactively consider long-term recovery, and a better understanding of the specific policy questions requiring resolution.  相似文献   

14.
Anthropogenic perturbations impact aquatic systems causing wide‐ranging responses, from assemblage restructuring to assemblage recovery. Previous studies indicate the duration and intensity of disturbances play a role in the dynamics of assemblage recovery. In August 2011, the Pearl River, United States, was subjected to a weak black liquor spill from a paper mill which resulted in substantial loss of fish in a large stretch of the main channel. We quantified resilience and recovery of fish assemblage structure in the impacted area following the event. We compared downstream (impacted) assemblages to upstream (unimpacted) assemblages to determine initial impacts on structure. Additionally, we incorporated historic fish collections (1988–2011) to examine impacts on assemblage structure across broad temporal scales. Based on NMDS, upstream and downstream sites generally showed similar assemblage structure across sample periods with the exception of the 2 months postdischarge, where upstream and downstream sites visually differed. Multivariate analysis of variance (PERMANOVA) indicated significant seasonal variation among samples, but found no significant interaction between impacted and unimpacted assemblages following the discharge event. However, multivariate dispersion (MVDISP) showed greater variance among assemblage structure following the discharge event. These results suggest that 2 months following the disturbance represent a time period of stochasticity in regard to assemblage structure dynamics, and this was followed by rapid recovery. We term this dynamic the “hangover effect” as it represents the time frame from the cessation of the perturbation to the assemblage's return to predisturbance conditions. The availability and proximity of tributaries and upstream refugia, which were not affected by the disturbance, as well as the rapid recovery of abiotic parameters likely played a substantial role in assemblage recovery. This study not only demonstrates rapid recovery in an aquatic system, but further demonstrates the value of continuous, long‐term, data collections which enhance our understanding of assemblage dynamics.  相似文献   

15.
This historical and conceptual overview of riparian ecosystem restoration discusses how riparian ecosystems have been defined, describes the hydrologic, geomorphic, and biotic processes that create and maintain riparian ecosystems of the western USA, identifies the main types of anthropogenic desturbances occurring in these ecosystems, and provides an overview of restoration methods for each disturbance type. We suggest that riparian ecosystems consist of two zones: Zone I occupies the active floodplain and is frequently inundated and Zone II extends from the active floodplain to the valley wall. Successful restoration depends n understanding the physical and biological processes that influence natural riparian ecosystems and the types of disturbance that have degraded riparian areas. Thus we recommend adopting a process-based approach for riparian restoration. Disturbances to riparian ecosystems in the western USA result from streamflow modifications by dams, reservoirs, and diversions; stream channelization; direct modification of the riparian ecosystem; and watershed disturbances. Four topics should be addressed to advance the state of science for restoration of riparian ecosys-tems: (1) interdisciplinary approaches, (2) a unified framework, (3) a better understanding of fundamental riparian ecosystem processes, and (4) restoration po-tential more closely related to disturbance type. Three issues should be considered regarding the cause of the degraded environment: (1) the location of the causative disturbance with respect to the degraded riparian area, (2) whether the disturbance is ongoing or can be elim-inated, and (3) whether or not recovery will occur nat-urally if the disturbance is removed.  相似文献   

16.
Both habitat heterogeneity and disturbance can profoundly influence ecological systems at many levels of biological and ecological organization. However, the joint influences of heterogeneity and disturbance on temporal variability in communities have received little attention despite the intense homogenizing influence of human activity. I performed a field manipulation of substrate heterogeneity in a small New England stream, and measured changes in benthic macroinvertebrate communities for 100 days—a period that included both a severe drought and a flood. Generally, community variability decreased with increasing substrate heterogeneity. However, within sampling intervals, this relationship tended to fluctuate through time, apparently tracking changes in hydrology. At the beginning of the experiment, community temporal variability clearly decreased along a gradient of increasing substrate heterogeneity—a result consistent with an observational study performed the previous year. During the subsequent weeks, droughts and flooding created exceptionally high variability in both hydrology and benthic macroinvertebrate community structure resulting in the disappearance of this relationship. However, during the last weeks of the experiment when hydrologic conditions were relatively more stable, the negatively sloped relationship between community temporal variability and habitat heterogeneity reemerged and mimicked relationships observed both early in the experiment and in the previous year’s study. High habitat heterogeneity may promote temporal stability through several mechanisms including stabilization of resources and increased refugia from minor disturbances or predation. However, the results of this experiment suggest that severe disturbance events can create large-scale environmental variability that effectively swamps the influence of habitat heterogeneity, illustrating that a thorough understanding of community temporal variability in natural systems will necessarily consider sources of environmental variability at multiple spatial and temporal scales. Handling editor: L. M. Bini  相似文献   

17.
Non-invasive measures for assessing long-term stress in free ranging mammals are an increasingly important approach for understanding physiological responses to landscape conditions. Using a spatially and temporally expansive dataset of hair cortisol concentrations (HCC) generated from a threatened grizzly bear (Ursus arctos) population in Alberta, Canada, we quantified how variables representing habitat conditions and anthropogenic disturbance impact long-term stress in grizzly bears. We characterized spatial variability in male and female HCC point data using kernel density estimation and quantified variable influence on spatial patterns of male and female HCC stress surfaces using random forests. Separate models were developed for regions inside and outside of parks and protected areas to account for substantial differences in anthropogenic activity and disturbance within the study area. Variance explained in the random forest models ranged from 55.34% to 74.96% for males and 58.15% to 68.46% for females. Predicted HCC levels were higher for females compared to males. Generally, high spatially continuous female HCC levels were associated with parks and protected areas while low-to-moderate levels were associated with increased anthropogenic disturbance. In contrast, male HCC levels were low in parks and protected areas and low-to-moderate in areas with increased anthropogenic disturbance. Spatial variability in gender-specific HCC levels reveal that the type and intensity of external stressors are not uniform across the landscape and that male and female grizzly bears may be exposed to, or perceive, potential stressors differently. We suggest observed spatial patterns of long-term stress may be the result of the availability and distribution of foods related to disturbance features, potential sexual segregation in available habitat selection, and may not be influenced by sources of mortality which represent acute traumas. In this wildlife system and others, conservation and management efforts can benefit by understanding spatial- and gender-based stress responses to landscape conditions.  相似文献   

18.
According to the European Water Framework Directive, waterbodies have to be classified on the basis of their ecological status using biological quality elements, such as macroinvertebrates. This needs to take into consideration the influence of natural variation (both spatial and temporal) of reference biological communities as this may obscure the effects caused by anthropogenic disturbance. We studied the influence of among-habitat and temporal (seasonal and interannual) changes on the macroinvertebrate communities of an Iberian shallow lake and the variability of 21 measures potentially useful for bioindication purposes. Two series of data were examined: (a) macroinvertebrate samples taken on four occasions over an annual cycle were used to assess the effects of seasonality and among-habitat variability; (b) macroinvertebrate samples collected in three consecutive summers were used to assess interannual variability. Coefficients of variation, expressed as percentage, were used to quantify the effect of among-habitat and temporal variability on the selected metrics. According to our results, % Insecta, Shannon–Wiener diversity index and the qualitative taxonomic metrics (measures based on number of taxa) were robust in terms of temporal (seasonal and interannual) and among-habitat variability. Abundance ratio and some metrics based on functional feeding groups were highly variable. Therefore, qualitative taxonomic metrics may be promising tools in biomonitoring programs of Mediterranean shallow lakes due to their comparatively low variability.  相似文献   

19.
Temporal characteristics of migratory behavior in birds are usually studied at the species and population levels, and rarely at the individual level. Variations among species and populations of the seasonal onset of migratory behavior have been widely investigated, but very little is known about its daily organization or whether birds are conservative in their behavior. The determination of intra‐ and inter‐individual variability is important for the study of genetic variations and can reveal the existence of different adaptation capacities within populations. This laboratory study analyzed intra‐ and inter‐individual variability of daily initiation and time course of nocturnal restlessness in partial‐migrant European quail (Coturnix coturnix coturnix). Thirty‐five quail were selected randomly from a captive stock, and their spring activity was recorded under natural daylenghs. Eighteen of the thirty‐five quail presented behavioral profiles of migrant birds. Migrant birds initiated their nocturnal activity punctually, and the time courses of the nocturnal activity of 88% of them revealed intra‐individual stability over six consecutive nights. All birds initiated their nocturnal activity after sunset and civil twilight, and they were more active at the beginning than the middle or end of the night, suggesting that their drive to migrate could be synchronized with particular skylight conditions. For the first time, stable individual profiles in the daily time course of migratory restlessness are shown. These results support previous findings concerning biological rhythms of quail and raise questions concerning the timing of migratory behavior.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号