首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The 32kb circular plasmid (cp32) family of Borrelia burgdorferi has been the subject of intensive investigation because its members encode numerous differentially expressed lipoproteins. As many as nine different cp32s appear to be capable of stable replication within a single spirochaete. Here, we show that a construct (pCE310) containing a 4 kb fragment from the putative maintenance region of a B. burgdorferi CA-11.2A cp32 was capable of autonomous replication in both high-passage B. burgdorferi B31 and virulent B. burgdorferi 297. Deletion analysis revealed that only the member of paralogous family 57 and the adjacent non-coding segment were essential for replication. The PF32 ParA orthologue encoded by the pCE310 insert was almost identical to the PF32 orthologues encoded on the B31 and 297 cp32-3 plasmids. The finding that cp32-3 was selectively deleted in both B31 and 297 transformants carrying pCE310 demonstrated the importance of the PF32 protein for cp32 compatibility and confirmed the prediction that cp32 plasmids expressing identical PF32 paralogues are incompatible. A shuttle vector containing the CA-11.2A cp32 plasmid maintenance region was used to introduce green, yellow and cyan fluorescent protein reporters into B. burgdorferi. Flow cytometry revealed that the green fluorescent protein was well expressed by almost 90% of both avirulent and infectious transformants. In addition to enhancing our understanding of B. burgdorferi plasmid biology, our results further the development of genetic systems for dissecting pathogenic mechanisms in Lyme disease.  相似文献   

2.
We have mapped the genes encoding the antigenic lipoproteins OspE and OspF to an approximately 18-kb circular plasmid in Borrelia burgdorferi N40. Sequencing and restriction mapping have revealed that this plasmid, cp18, is homologous to an 18-kb region of the cp32 circular plasmids found in the Lyme disease spirochetes. Our data show that cp18 may have arisen from an ancestral cp32 plasmid by deletion of a 14-kb region of DNA, indicating that a significant portion of the cp32 plasmid is not essential in cis for plasmid maintenance. These findings suggest that a relatively small recombinant plasmid capable of being stably maintained in B. burgdorferi could be constructed from a cp32 plasmid.  相似文献   

3.
All isolates of the spirochete Borrelia burgdorferi contain multiple, different plasmids of the cp32 family, each of which contains a locus encoding Erp surface proteins. Many of these proteins are known to bind host complement regulatory factor H, enabling the bacteria to avoid killing by the alternative complement pathway during vertebrate infection. In the present study, we characterized the erp loci and cp32 plasmids of strains N40, Sh-2-82, and 297 and compared them to the previously determined cp32 sequences of type strain B31. Bacteria of strain N40 contain 6 different cp32s, those of Sh-2-82 contain 10, and 297 bacteria contain 9 cp32s. Significant conservation between all strains was noted for the cp32 loci responsible for plasmid maintenance, indicating close relationships that appear to correspond with incompatibility groups. In contrast, considerable diversity was found between erp gene sequences, both within individual bacteria and between different strains. However, examples of identities among erp loci were found, with strains Sh-2-82, 297, and B31 each containing three identical loci that likely arose through intrabacterial genetic rearrangements. These studies also found the first evidence of large-scale genetic exchanges between Lyme disease spirochetes in nature, including the apparent transfer of an entire cp32 plasmid between two different bacteria.  相似文献   

4.
Clinical and murine studies suggest that there is a differential pathogenicity of different genotypes of Borrelia burgdorferi, the spirochetal agent of Lyme disease. Comparative genome hybridization was used to explore the relationship between different genotypes. The chromosomes of all studied isolates were highly conserved (>93%) with respect to both sequence and gene order. Plasmid sequences were substantially more diverse. Plasmids lp54, cp26, and cp32 were present in all tested isolates, and their sequences and gene order were conserved. The majority of linear plasmids showed variation both in terms of presence among different isolates and in terms of sequence and gene order. The data strongly imply that all B. burgdorferi clinical isolates contain linear plasmids related to each other, but the structure of these replicons may vary substantially from isolate to isolate. These alterations include deletions and presumed rearrangements that are likely to result in unique plasmid elements in many isolates. There is a strong correlation between complete genome hybridization profiles and other typing methods, which, in turn, also correlate to differences in pathogenicity. Because there is substantially less variation in the chromosomal and circular plasmid portions of the genome, the major differences in open reading frame content and genomic diversity among isolates are linear plasmid driven.  相似文献   

5.
We have characterized seven different 32-kb circular plasmids carried by Borrelia burgdorferi isolate B31. Restriction endonuclease recognition site mapping and partial sequencing of these plasmids indicated that all seven are probably closely related to each other throughout their lengths and have substantial relationships to cp8.3, an 8.3-kb circular plasmid of B. burgdorferi sensu lato isolate Ip21. With the addition of the seven 32-kb plasmids, this bacterial strain is known to carry at least 10 linear and 9 circular plasmids. Variant cultures of B. burgdorferi B31 lacking one or more of the 32-kb circular plasmids are viable and, at least in some cases, infectious. We have examined a number of different natural isolates of Lyme disease borreliae and found that all of the B. burgdorferi sensu stricto isolates and most of the B. burgdorferi sensu lato isolates tested appear to carry multiple 32-kb circular plasmids related to those of B. burgdorferi B31. The ubiquity of these plasmids suggests that they may be important in the natural life cycle of these organisms. They may be highly conjugative plasmids or prophage genomes, which could prove to be useful in genetically manipulating B. burgdorferi.  相似文献   

6.
Tilly K  Checroun C  Rosa PA 《Plasmid》2012,68(1):1-12
Borrelia burgdorferi has multiple linear and circular plasmids that are faithfully replicated and partitioned as the bacterium grows and divides. The low copy number of these replicons implies that active partitioning contributes to plasmid stability. Analyzing the requirements for plasmid replication and partition in B. burgdorferi is complicated by the complexity of the genome and the possibility that products may act in trans. Consequently, we have studied the replication-partition region (bbb10-13) of the B. burgdorferi 26kb circular plasmid (cp26) in Escherichia coli, by fusion with a partition-defective miniF plasmid. Our analysis demonstrated that bbb10, bbb11, and bbb13 are required for stable miniF maintenance, whereas bbb12 is dispensable. To validate these results, we attempted to inactivate two of these genes in B. burgdorferi. bbb12 mutants were obtained at a typical frequency, suggesting that the bbb12 product is dispensable for cp26 maintenance as well. We could not directly measure cp26 stability in the bbb12 mutant, because cp26 carries essential genes, and bacteria that have lost cp26 are inviable. Conversely, we were unable to inactivate bbb10 on cp26 of B. burgdorferi. Our results suggest that bbb12 is dispensable for cp26 maintenance, whereas bbb10, bbb11, and bbb13 play crucial roles in that process.  相似文献   

7.
Borrelia burgdorferi, the causative agent of Lyme disease in North America, is an invasive pathogen that causes persistent multiorgan manifestations in humans and other mammals. Genetic studies of this bacterium are complicated by the presence of multiple plasmid replicons, many of which are readily lost during in vitro culture. The analysis of B. burgdorferi plasmid content by plasmid-specific PCR and agarose gel electrophoresis or other existing techniques is informative, but these techniques are cumbersome and challenging to perform in a high-throughput manner. In this study, a PCR-based Luminex assay was developed for determination of the plasmid content of the strain B. burgdorferi B31. This multiplex, high-throughput method allows simultaneous detection of the plasmid contents of many B. burgdorferi strains in a 96-well format. The procedure was used to evaluate the occurrence of plasmid loss in 44 low-passage B. burgdorferi B31 clones and in a library of over 4,000 signature-tagged mutagenesis (STM) transposon mutant clones. This analysis indicated that only 40% of the clones contained all plasmids, with (in order of decreasing frequency) lp5, lp56, lp28-1, lp25, cp9, lp28-4, lp28-2, and lp21 being the most commonly missing plasmids. These results further emphasize the need for careful plasmid analysis in Lyme disease Borrelia studies. Adaptations of this approach may also be useful in the evaluation of plasmid content and chromosomal gene variations in additional Lyme disease Borrelia strains and other organisms with variable genomes and in the correlation of these genetic differences with pathogenesis and other biological properties.  相似文献   

8.
B Stevenson  K Tilly    P A Rosa 《Journal of bacteriology》1996,178(12):3508-3516
We have identified four loci in Borrelia burgdorferi B31 that contain open reading frames capable of encoding six proteins that are related to the antigenic proteins OspE and OspF. We have designated these proteins Erp, for OspEF-related protein, and named their respective genes erp. The erpA and erpB genes are linked, as are erpC and erpD, and the pairs probably constitute two operons. The erpG and erpH genes appear to be monocistronic. The ErpA and ErpC proteins are expressed by B. burgdorferi B31 in culture and are recognized by a polyclonal antiserum raised against the OspE protein of B. burgdorferi N40. The four erp loci are each located on different 32-kb circular plasmids that contain additional DNA sequences that are homologous to each other and to an 8.3-kb circular plasmid of B. burgdorferi sensu lato Ip2l. All four 32-kb plasmids can be maintained within a single bacterium, which may provide a model for the study of plasmid replication and segregation in B. burgdorferi.  相似文献   

9.
All examined isolates of the Lyme disease spirochete, Borrelia burgdorferi, naturally maintain numerous variants of a prophage family as circular cp32 episomes. Each cp32 carries a locus encoding one or two different Erp outer membrane, surface-exposed lipoproteins. Many of the Erp proteins bind a host complement regulator, factor H, which is hypothesized to protect the spirochete from complement-mediated killing. We now describe the isolation and characterization of a novel, chromosomally encoded protein, EbfC, that binds specific DNA sequences located immediately 5' of all erp loci. This is one of the first site-specific DNA-binding proteins to be identified in any spirochete. The location of the ebfC gene on the B. burgdorferi chromosome suggests that the cp32 prophages have evolved to use this bacterial host protein for their own benefit and that EbfC probably plays additional roles in the bacterium. A wide range of other bacteria encode homologs of EbfC, none of which have been well characterized, so demonstration that B. burgdorferi EbfC is a site-specific DNA-binding protein has broad implications across the eubacterial kingdom.  相似文献   

10.
We previously described a bacteriophage of the Lyme disease agent Borrelia burgdorferi designated phiBB-1. This phage packages the host complement of the 32-kb circular plasmids (cp32s), a group of homologous molecules found throughout the genus Borrelia. To demonstrate the ability of phiBB-1 to package and transduce DNA, a kanamycin resistance cassette was inserted into a cloned fragment of phage DNA, and the resulting construct was transformed into B. burgdorferi CA-11.2A cells. The kan cassette recombined into a resident cp32 and was stably maintained. The cp32 containing the kan cassette was packaged by phiBB-1 released from this B. burgdorferi strain. phiBB-1 has been used to transduce this antibiotic resistance marker into naive CA-11.2A cells, as well as two other strains of B. burgdorferi. This is the first direct evidence of a mechanism for lateral gene transfer in B. burgdorferi.  相似文献   

11.
Although sequence analysis of Borrelia burgdorferi isolate B31 was recently declared "complete," we found that cultures of this strain can contain a novel 9-kb circular plasmid, cp9-2. The newly described plasmid contains both sequence similarities with and differences from the previously identified B31 plasmid cp9-1 (formerly cp9). cp9-1 and cp9-2 each encode a unique allele of EppA, a putative membrane protein synthesized by B. burgdorferi during mammalian infection.  相似文献   

12.
The genome of Borrelia burgdorferi is composed of one linear chromosome and approximately 20 linear and circular plasmids. Although some plasmids are required by B. burgdorferi in vivo, most plasmids are dispensable for growth in vitro. However, circular plasmid (cp) 26 is present in all natural isolates and has never been lost during in vitro growth. This plasmid carries ospC, which is critical for mammalian infection. We previously showed that cp26 encodes essential functions, including the telomere resolvase, ResT, and hence cannot be displaced. Here we identify two additional essential genes on cp26, bbb26 and bbb27, through a systematic attempt to inactivate each open reading frame (ORF). Furthermore, an incompatible plasmid carrying resT, bbb26 and bbb27 could displace cp26. Computational and experimental analyses suggested that both BBB26 and BBB27 are membrane-associated, periplasmic proteins. These data indicate that bbb26 and bbb27 encode essential but possibly redundant functions and that one or the other of these cp26 genes, in addition to resT, is required for bacterial viability. We conclude that the genetic linkage of critical physiological and virulence functions on cp26 is pertinent to its stable maintenance throughout the evolution of B. burgdorferi.  相似文献   

13.
Linear- and circular-plasmid copy numbers in Borrelia burgdorferi.   总被引:16,自引:0,他引:16       下载免费PDF全文
Borrelia burgdorferi, the Lyme disease agent, and other members of the spirochetal genus Borrelia have double-stranded linear plasmids in addition to supercoiled circular plasmids. The copy number relative to the chromosome was determined for 49- and 16-kb linear plasmids and a 27-kb circular plasmid of the type strain, B31, of B. burgdorferi. All three plasmids were present in low copy number, about one per chromosome equivalent, as determined by relative hybridizations of replicon-specific DNA probes. The low copy number of Borrelia plasmids suggests that initiation of DNA replication and partitioning are carefully controlled during the cell division cycle. The copy numbers of these three plasmids of strain B31 were unchanged after approximately 7,000 generations in continuous in vitro culture. A clone of B. burgdorferi B31 that did not contain the 16-kb linear plasmid was obtained after exposure of a culture to novobiocin, a DNA gyrase inhibitor. The plasmid-cured strain contains only one linear plasmid, the 49-kb plasmid, and thus has the smallest genome reported to date for B. burgdorferi.  相似文献   

14.
The genome of the type strain (B31) of Borrelia burgdorferi, the causative agent of Lyme disease, is composed of 12 linear and 9 circular plasmids and a linear chromosome. Plasmid content can vary among strains, but one 26-kb circular plasmid (cp26) is always present. The ubiquitous nature of cp26 suggests that it provides functions required for bacterial viability. We tested this hypothesis by attempting to selectively displace cp26 with an incompatible but replication-proficient vector, pBSV26. While pBSV26 transformants contained this incompatible vector, the vector coexisted with cp26, which is consistent with the hypothesis that cp26 carries essential genes. Several cp26 genes with ascribed or predicted functions may be essential. These include the BBB29 gene, which has sequence homology to a gene encoding a glucose-specific phosphotransferase system component, and the resT gene, which encodes a telomere resolvase involved in resolution of the replicated telomeres of the linear chromosome and plasmids. The BBB29 gene was successfully inactivated by allelic exchange, but attempted inactivation of resT resulted in merodiploid transformants, suggesting that resT is required for B. burgdorferi growth. To determine if resT is the only cp26 gene essential for growth, we introduced resT into B. burgdorferi on pBSV26. This did not result in displacement of cp26, suggesting that additional cp26 genes encode vital functions. We concluded that B. burgdorferi plasmid cp26 encodes functions critical for survival and thus shares some features with the chromosome.  相似文献   

15.
Borrelia burgdorferi contains abundant circular and linear plasmids, but the mechanism of replication of these extrachromosomal elements is unknown. A B. burgdorferi 9 kb circular plasmid (cp9) was amplified in its entirety by the polymerase chain reaction and used to construct a shuttle vector that replicates in Escherichia coli and B. burgdorferi. A 3.3 kb region of cp9 containing three open reading frames was used to construct a smaller shuttle vector, designated pBSV2. This vector was stably maintained in B. burgdorferi, indicating that all elements necessary for autonomous replication are probably located on this 3.3 kb fragment. A non-infectious B. burgdorferi strain was efficiently transformed by pBSV2. Additionally, infectious B. burgdorferi was also successfully transformed by pBSV2, indicating that infectious strains of this important human pathogen can now be genetically manipulated.  相似文献   

16.
Lyme disease is the most common tick-borne human illness in North America. In order to understand the molecular pathogenesis, natural diversity, population structure and epizootic spread of the North American Lyme agent, Borrelia burgdorferi sensu stricto, a much better understanding of the natural diversity of its genome will be required. Towards this end we present a comparative analysis of the nucleotide sequences of the numerous plasmids of B. burgdorferi isolates B31, N40, JD1 and 297. These strains were chosen because they include the three most commonly studied laboratory strains, and because they represent different major genetic lineages and so are informative regarding the genetic diversity and evolution of this organism. A unique feature of Borrelia genomes is that they carry a large number of linear and circular plasmids, and this work shows that strains N40, JD1, 297 and B31 carry related but non-identical sets of 16, 20, 19 and 21 plasmids, respectively, that comprise 33-40% of their genomes. We deduce that there are at least 28 plasmid compatibility types among the four strains. The B. burgdorferi ~900 Kbp linear chromosomes are evolutionarily exceptionally stable, except for a short ≤20 Kbp plasmid-like section at the right end. A few of the plasmids, including the linear lp54 and circular cp26, are also very stable. We show here that the other plasmids, especially the linear ones, are considerably more variable. Nearly all of the linear plasmids have undergone one or more substantial inter-plasmid rearrangements since their last common ancestor. In spite of these rearrangements and differences in plasmid contents, the overall gene complement of the different isolates has remained relatively constant.  相似文献   

17.
18.
We have determined that Borrelia burgdorferi strain B31 MI carries 21 extrachromosomal DNA elements, the largest number known for any bacterium. Among these are 12 linear and nine circular plasmids, whose sequences total 610 694 bp. We report here the nucleotide sequence of three linear and seven circular plasmids (comprising 290 546 bp) in this infectious isolate. This completes the genome sequencing project for this organism; its genome size is 1 521 419 bp (plus about 2000 bp of undetermined telomeric sequences). Analysis of the sequence implies that there has been extensive and sometimes rather recent DNA rearrangement among a number of the linear plasmids. Many of these events appear to have been mediated by recombinational processes that formed duplications. These many regions of similarity are reflected in the fact that most plasmid genes are members of one of the genome's 161 paralogous gene families; 107 of these gene families, which vary in size from two to 41 members, contain at least one plasmid gene. These rearrangements appear to have contributed to a surprisingly large number of apparently non-functional pseudogenes, a very unusual feature for a prokaryotic genome. The presence of these damaged genes suggests that some of the plasmids may be in a period of rapid evolution. The sequence predicts 535 plasmid genes >/=300 bp in length that may be intact and 167 apparently mutationally damaged and/or unexpressed genes (pseudogenes). The large majority, over 90%, of genes on these plasmids have no convincing similarity to genes outside Borrelia, suggesting that they perform specialized functions.  相似文献   

19.
The conserved cp32 plasmid family of Borrelia burgdorferi was recently shown to be packaged into a bacteriophage particle (C. H. Eggers and D. S. Samuels, J. Bacteriol. 181:7308-7313, 1999). This plasmid encodes BlyA, a 7.4-kDa membrane-interactive protein, and BlyB, an accessory protein, which were previously proposed to comprise a hemolysis system. Our genetic and biochemical evidence suggests that this hypothesis is incorrect and that BlyA and BlyB function instead as a prophage-encoded holin or holin-like system for this newly described bacteriophage. An Escherichia coli mutant containing the blyAB locus that was defective for the normally cryptic host hemolysin SheA was found to be nonhemolytic, suggesting that induction of sheA by blyAB expression was responsible for the hemolytic activity observed previously. Analysis of the structural features of BlyA indicated greater structural similarity to bacteriophage-encoded holins than to hemolysins. Consistent with holin characteristics, subcellular localization studies with E. coli and B. burgdorferi indicated that BlyA is solely membrane associated and that BlyB is a soluble protein. Furthermore, BlyA exhibited a holin-like function by promoting the endolysin-dependent lysis of an induced lambda lysogen that was defective in the holin gene. Finally, induction of the cp32 prophage in B. burgdorferi dramatically stimulated blyAB expression. Our results provide the first evidence of a prophage-encoded holin within Borrelia.  相似文献   

20.
We have recovered a DNase-protected, chloroform-resistant molecule of DNA from the cell-free supernatant of a Borrelia burgdorferi culture. The DNA is a 32-kb double-stranded linear molecule that is derived from the 32-kb circular plasmids (cp32s) of the B. burgdorferi genome. Electron microscopy of samples from which the 32-kb DNA molecule was purified revealed bacteriophage particles. The bacteriophage has a polyhedral head with a diameter of 55 nm and appears to have a simple 100-nm-long tail. The phage is produced constitutively at low levels from growing cultures of some B. burgdorferi strains and is inducible to higher levels with 10 microg of 1-methyl-3-nitroso-nitroguanidine (MNNG) ml(-1). In addition, the prophage can be induced with MNNG from some Borrelia isolates that do not naturally produce phage. We have isolated and partially characterized the phage associated with B. burgdorferi CA-11.2A. To our knowledge, this is the first molecular characterization of a bacteriophage of B. burgdorferi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号