首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An increase in oxidative stress may contribute to the development of diabetic complications. The key aqueous-phase chain-breaking antioxidant ascorbate is known to be deficient in diabetes, and we have therefore investigated the effects of ascorbate supplementation on oxidative stress in the streptozotocin diabetic rat. Markers of lipid peroxidation (malondialdehyde [MDA] and diene conjugates) were increased in plasma and erythrocytes of untreated diabetic animals, and levels of the antioxidants ascorbate and retinol were reduced. Plasma tocopherol was unchanged. Insulin treatment normalized MDA and ascorbate levels, although ascorbate metabolism remained disturbed, as indicated by increased levels of dehydroascorbate. High-dose ascorbate supplementation in the absence of insulin treatment restored plasma ascorbate to normal and increased plasma retinol and tocopherol levels. However, MDA and diene conjugate levels remained unchanged, possibly as a result of increased iron availability. High-dose ascorbate supplementation should be approached with caution in diabetes, as ascorbate may exert both antioxidant and prooxidant effects in vivo.  相似文献   

2.
3.
Lipid peroxidation in kidney of rats fed with vitamin B-6 deficient diet for a period of 12 weeks was studied with pair-fed controls. The basal lipid peroxide level as well as the degree of susceptibility to lipid peroxidation in presence of promotors such as NADPH, ascorbate, t-butyl hydroperoxide, Fe2+, Cu2+ and oxalate, were increased in vitamin B-6 deficient kidney. The observed increased lipid peroxidation in vitamin B-6 deficient kidney was correlated with high levels of lipids, copper, iron, calcium and oxalate, low levels of antioxidants and antioxidant enzymes and increased levels of hydroperoxides and hydroxyl radicals.  相似文献   

4.
Previously, we have investigated the potential for a pro-oxidant interaction of iron and ascorbate in vivo in iron and ascorbate cosupplementation or ascorbate supplementation studies. In this study, for the first time, the effects of iron supplementation on oxidative damage to DNA in healthy individuals with plasma ascorbate levels at the upper end of the normal range were examined. Forty female and male volunteers (mean plasma ascorbate approximately equal to 70 micromol/L) were supplemented with a daily dose of syrup (ferrous glycine sulphate equivalent to 12.5 mg iron) for 6 weeks. Serum ferritin, transferrin bound iron, % saturation of transferrin and plasma ascorbate were assessed and the mean dietary intakes of all subjects were estimated through food frequency questionnaires. Oxidative damage to DNA bases from white blood cells was measured by gas chromatography/mass spectrometry with selected-ion monitoring (GC/MS-SIM), using isotope-labelled standards for quantification. Iron supplementation did not affect any of the iron status parameters. There were also no detrimental effects, over the period under investigation, in terms of oxidative damage to DNA. However, the effects of larger doses or of longer supplementation periods should also be investigated.  相似文献   

5.
Abuja PM 《FEBS letters》1999,446(2-3):305-308
Uric acid and ascorbic acid are important low molecular weight antioxidants in plasma. Their interactions and combined effect on Cu(2+)-catalysed oxidation of human low density lipoprotein were studied in vitro. It was found that uric acid alone becomes strongly prooxidant whenever it is added to low density lipoprotein shortly after the start of oxidation (conditional prooxidant). Ascorbic acid, which is present in human plasma at much lower concentrations (20-60 microM) than urate (300-400 microM), is in itself not a conditional prooxidant. Moreover, ascorbate prevents prooxidant effects of urate, when added to oxidising low density lipoprotein simultaneously with urate, even at a 60-fold molar excess of urate over ascorbate. Ascorbate appears to have the same anti-prooxidant effect with other aqueous reductants, which, besides their antioxidant properties, were reported to be conditionally prooxidant. Such interactions between ascorbate and urate may be important in preventing oxidative modification of lipoproteins in the circulation and in other biological fluids.  相似文献   

6.
ObjectiveOur aim was to assess the effects of dietary iron, and the compound capsaicin, on hemoglobin as well as metabolic indicators including blood glucose, cholesterol, triglycerides, insulin, and glucose tolerance.ResultsHealthy rats fed a low-iron diet exhibited significantly reduced total cholesterol and triglyceride levels, compared with rats fed a control diet. Significantly reduced blood lipid was also provoked by low dietary iron in diabetic rats, compared with those fed a control diet. Insulin, and glucose tolerance was only improved in healthy rats fed the low-iron diet. Significant increases in total cholesterol were found in diabetic rats fed a high-iron diet, compared with healthy rats fed the same diet, although no statistical differences were found for triglycerides. Hemoglobin levels, which were not statistically different in diabetic versus healthy rats fed the high-iron diet, fell when capsaicin was added. Capsaicin also provoked a fall in the level of cholesterol and triglycerides in diabetic animals, versus diabetics fed with the high iron diet alone. In conclusion, low levels of dietary iron reduced levels of serum triglycerides, hemoglobin, and cholesterol, and significantly improved insulin, and glucose tolerance in healthy rats. In contrast, a high-iron diet increased cholesterol significantly, with no significant changes to triglyceride concentrations. The addition of capsaicin to the high-iron diet (for diabetic rats) further reduced levels of hemoglobin, cholesterol, and triglycerides. These results suggest that capsaicin, may be suitable for the treatment of elevated hemoglobin, in patients.  相似文献   

7.
To assess the effects of short-term and long-term vitamin C supplementation in humans on plasma antioxidant status and resistance to oxidative stress, plasma was obtained from 20 individuals before and 2h after oral administration of 2g of vitamin C, or from eight subjects enrolled in a vitamin C depletion-repletion study using increasing daily doses of vitamin C from 30 to 2500 mg. Plasma concentrations of ascorbate, but not other physiological antioxidants, increased significantly after short-term supplementation, and increased progressively in the long-term study with increasing vitamin C doses of up to 1000 mg/day. Upon incubation of plasma with a free radical initiator, ascorbate concentrations were positively correlated with the lag phase preceding detectable lipid peroxidation. We conclude that vitamin C supplementation in humans dose-dependently increases plasma ascorbate concentrations and, thus, the resistance of plasma to lipid peroxidation ex vivo. Plasma and body saturation with vitamin C in humans appears desirable to maximize antioxidant protection and lower risk of oxidative damage.  相似文献   

8.
Ozone (O(3)), a major component of urban air pollution, is a strong oxidizing agent that can cause lung injury and inflammation. In the present study, we investigated the effect of inhalation of O(3) on levels of F(2)-isoprostanes in bronchoalveolar lavage fluid (BALF) and on levels of antioxidants in the BALF and plasma of hamsters. Because antioxidants, including urate, ascorbate, GSH, and vitamin E, defend the lungs by reacting with oxidizing agents, we expected to find a decrease in antioxidant levels after O(3) exposure. Similarly, we expected an increase in the levels of F(2)-isoprostanes, which are lipid peroxidation products. Exposure to 1.0 or 3.0 parts/million (ppm) O(3) for 6 h resulted in an increase in BALF neutrophil numbers, an indicator of acute inflammation, as well as elevation of BALF F(2)-isoprostanes. The higher dose of O(3) caused an increase in the BALF level of urate and a decrease in the plasma level of ascorbate, but 1.0 ppm O(3) had no effect on BALF or plasma antioxidant levels. Exposure to 0.12 ppm O(3) had no effect on BALF neutrophils or F(2)-isoprostanes nor on BALF and plasma antioxidants. We also investigated the effect of O(3) exposure of hamsters during exercise on F(2)-isoprostane and antioxidant levels. We found that exposure to 1.0 ppm O(3) during 1 h of exercise on a laddermill increased BALF levels of F(2)-isoprostanes but had no effect on BALF neutrophils or on BALF and plasma antioxidants. These results indicate that O(3) induces inflammation and biomolecule oxidation in the lungs, whereas extracellular antioxidant levels are relatively unchanged.  相似文献   

9.
Chelation therapy is thought to not only remove contaminating metals but also to decrease free radical production. EDTA chelation therapy, containing high doses of vitamin C as an antioxidant, is often used in the treatment of diseases such as diabetes and cardiovascular diseases but the effectiveness of this treatment may be variable and its efficacy has not been demonstrated conclusively. The objective of this work was to determine if the vitamin C added to standard chelation therapy cocktails was prooxidant. We administered a standard EDTA cocktail solution with or without 5 g of sodium ascorbate. One hour following the standard chelation therapy, there were highly significant prooxidant effects on lipids, proteins, and DNA associated with decreased activities of RBC glutathione peroxidase and superoxide dismutase while in the absence of sodium ascorbate, there were no acute signs of oxidative damage. After 16 sessions of standard chelation therapy, the acute prooxidant effects of vitamin C remained, but, even in the absence of nutrient supplements, there were beneficial long-term antioxidant effects of chelation therapy and plasma peroxide levels decreased. In conclusion, multiple sessions of EDTA chelation therapy protect lipids against oxidative damage. However, standard high amounts of vitamin C added to EDTA chelation solutions also display short term prooxidant effects. The added benefits of lower levels of vitamin C in chelation therapy need to be documented.  相似文献   

10.
The phenolic constituents of Mauritian endemic plants from the Rubiaceae and Myrtaceae family were assessed and correlated with their potential antioxidant activities in vitro. The antioxidant activities of the plant extracts ranged from 0.27 to 1.49mmol Trolox equivalent/g FW and from 0.20 to 1.39mmol Fe(II) equivalent/g FW in the TEAC and FAP assays, respectively, with Syzygium commersonii showing the highest activity in these two systems. Eugenia orbiculata and all the Syzygium species were effective scavengers of hypochlorous acid while Monimiastrum acutisepalum was the most potent inhibitor of deoxyribose degradation. The plant extracts inhibited microsomal lipid peroxidation with low IC(50)s ranging from 0.02 to 1.75mgFW/mL when reaction was initiated with Fe(3+)/ascorbate and from 0.093 to 1.55mgFW/mL in the AAPH-dependent lipid peroxidation. The potential prooxidant nature of the plant extracts was compared with ascorbate (250microM) using copper-phenanthroline assay. The plant extracts at concentrations up to 5gFW/L were not prooxidant. However, Myonima nitens, Syzygium commersonii, Syzygium glomeratum and Syzygium mauritianum at concentrations of 10gFW/L had potency approaching 50% of the prooxidant activity of ascorbic acid in vitro, suggesting relative safeties. The total phenolics influenced the antioxidant activities in the TEAC, FRAP and HOCl scavenging assays whereas a negative correlation was observed with the deoxyribose assay. The high levels of polyphenolic compounds and the significant antioxidant activities of these Rubiaceae and Myrtaceae plant family make them suitable candidates as prophylactic agent.  相似文献   

11.
The purpose of this article is to summarise our studies, in which the main determinants and absorption of plasma coenzyme Q10 (Q10, ubiquinone) have been assessed, and the effects of moderate dose oral Q10 supplementation on plasma antioxidative capacity, lipoprotein oxidation resistance and on plasma lipid peroxidation investigated. All the supplementation trials carried out have been blinded and placebo-controlled clinical studies. Of the determinants of Q10, serum cholesterol, serum triglycerides, male gender, alcohol consumption and age were found to be associated positively with plasma Q10 concentration. A single dose of 30 mg of Q10, which is the maximum daily dose recommended by Q10 producers, had only a marginal elevating effect on plasma Q10 levels in non-Q10-deficient subjects. Following supplementation, a dose-dependent increase in plasma Q10 levels was observed up to a daily dose of 200 mg, which resulted in a 6.1-fold increase in plasma Q10 levels. However, simultaneous supplementation with vitamin E resulted in lower plasma Q10 levels. Of the lipid peroxidation measurements, Q10 supplementation did not increase LDL TRAP, plasma TRAP, VLDL+LDL oxidation resistance nor did it decrease LDL oxidation susceptibility ex vivo. Q10 with minor vitamin E dose neither decreased exercise-induced lipid peroxidation ex vivo nor muscular damage. Q10 supplementation might, however, decrease plasma lipid peroxidation in vivo , as assessed by the increased proportion of plasma ubiquinol (reduced form, Q10H 2 ) of total Q10. High dose vitamin E supplementation decreased this proportion, which suggests in vivo regeneration of tocopheryl radicals by ubiquinol.  相似文献   

12.
The purpose of this article is to summarise our studies, in which the main determinants and absorption of plasma coenzyme Q10 (Q10, ubiquinone) have been assessed, and the effects of moderate dose oral Q10 supplementation on plasma antioxidative capacity, lipoprotein oxidation resistance and on plasma lipid peroxidation investigated. All the supplementation trials carried out have been blinded and placebo-controlled clinical studies. Of the determinants of Q10, serum cholesterol, serum triglycerides, male gender, alcohol consumption and age were found to be associated positively with plasma Q10 concentration. A single dose of 30 mg of Q10, which is the maximum daily dose recommended by Q10 producers, had only a marginal elevating effect on plasma Q10 levels in non-Q10-deficient subjects. Following supplementation, a dose-dependent increase in plasma Q10 levels was observed up to a daily dose of 200 mg, which resulted in a 6.1-fold increase in plasma Q10 levels. However, simultaneous supplementation with vitamin E resulted in lower plasma Q10 levels. Of the lipid peroxidation measurements, Q10 supplementation did not increase LDL TRAP, plasma TRAP, VLDL+LDL oxidation resistance nor did it decrease LDL oxidation susceptibility ex vivo. Q10 with minor vitamin E dose neither decreased exercise-induced lipid peroxidation ex vivo nor muscular damage. Q10 supplementation might, however, decrease plasma lipid peroxidation in vivo, as assessed by the increased proportion of plasma ubiquinol (reduced form, Q10H 2 ) of total Q10. High dose vitamin E supplementation decreased this proportion, which suggests in vivo regeneration of tocopheryl radicals by ubiquinol.  相似文献   

13.
Developing atherosclerotic lesions in hypercholesterolemic rabbits are depleted in zinc, while iron accumulates. This study examined the influence of zinc supplementation on the development of atherosclerosis and used isotope dilution gas chromatography-mass spectrometry techniques to measure biomarkers of oxidative lipid damage in atherosclerotic rabbit aorta. Our previous method for F(2)-isoprostane measurement was adapted to include the quantitation of cholesterol oxidation products in the same sample. Two groups of New Zealand white rabbits were fed a high cholesterol (1% w/w) diet and one group was also supplemented with zinc (1 g/kg) for 8 weeks. Controls were fed a normal diet. Zinc supplementation did not significantly alter the increase in total plasma cholesterol levels observed in animals fed high cholesterol. However, in cholesterol-fed animals zinc supplementation significantly reduced the accumulation of total cholesterol levels in aorta which was accompanied by a significant reduction in average aortic lesion cross-sectional areas of the animals. Elevated levels of cholesterol oxidation products (5,6-alpha and beta cholesterol epoxides, 7beta-hydroxycholesterol, 7-ketocholesterol) in aorta and total F(2)-isoprostanes in plasma and aorta of rabbits fed a cholesterol diet were significantly decreased by zinc supplementation. Our data indicate that zinc has an antiatherogenic effect, possibly due to a reduction in iron-catalyzed free radical reactions.  相似文献   

14.
Eight groups of 13-15 female rats were fed purified diets after littering. Four groups received a low protein (8% casein) diet (groups 8) and the others, a normal protein (20% casein) diet (groups 20). Carbohydrates were supplied either as starch (groups S) or as starch plus 40% fructose (groups F). Half the animals received a 0.4% methionine supplementation (groups M). Four or five dams per group were sacrificed on days 2, 7 and 14 after littering. The diet intake was increased by methionine supplementation, substitution of starch for fructose and increased protein content, mainly during the second week of lactation. This influenced weight variation of the dams and litter growth. On all days, the plasma levels of cholesterol esters, triglycerides and phospholipids were positively correlated with the dietary protein level. On days 7 and 14, the liver neutral lipid content was increased in rats fed the low protein diets supplemented with methionine (groups 8SM and 8FM) and the normal protein diets containing 40% fructose (groups 20F and 20FM). The plasma free threonine content was positively correlated with the protein level in the diet. On day 14, rats fed a low protein diet had a threonine deficiency, except those in groups 8S and 8F. The plasma free threonine content of these rats was not reduced, possibly due to an impaired utilization of this amino acid. The liver lipidosis observed during lactation, in contrast to that observed during growth with a low protein diet, was not due to a threonine deficiency.  相似文献   

15.
Dietary antioxidants, including alpha-tocopherol (alpha-TOH) and polyphenolic flavonoid compounds, have been the subject of much research interest, but few studies have investigated interactions between these two antioxidants in vivo. We have conducted a feeding study to determine if supplementation with dietary flavonoids or polyphenol-containing compounds will provide antioxidant protection in tocopherol-deficient animals or exceed the antioxidant protection provided by alpha-TOH alone, using the sensitive and specific measure of lipid peroxidation, F2-isoprostanes. Seventy-two male Sprague Dawley rats were divided into 12 treatment groups to receive either alpha-TOH-sufficient or -deficient AIN93-G diet supplemented with one of five compounds: 0.5% quercetin, catechin, or epicatechin; or 1% cocoa powder or lignin. The fat source was polyunsaturated oil, increased from 7 to 11.05% (w/w with diet) to maximize lipid peroxidation while staying within a physiological range. After 7 weeks of treatment, animals were sacrificed with plasma and hearts analyzed to determine differences in F2-isoprostane levels. None of the treatment compounds significantly decreased plasma or heart F2-isoprostanes compared to the control beyond the significant protection displayed by alpha-tocopherol. We conclude that under these experimental conditions, quercetin, catechin, and epicatechin do not suppress lipid peroxidation in vivo.  相似文献   

16.
A high-performance liquid chromatography (HPLC) method to determine malondialdehyde (MDA) as the 2,4-dinitrophenylhydrazine (DNPH) derivative was applied to biological samples (serum and liver homogenates). Since MDA is considered a presumptive biomarker for lipid peroxidation in live organisms, a model for nutritionally induced oxidative stress (hypercholesterolemic rats) was studied in comparison with normocholesterolemic animals. The effect of diet supplementation with fruits rich in antioxidant polyphenols was assessed. The proposed method showed to be precise and reproducible, as well as sensitive enough to reflect differences in the oxidative status in vivo. A significant decrease of serum and liver MDA concentrations in animals fed diets containing 0.3% of polyphenols from strawberry, cocoa or plum was observed in the normocholesterolemic groups. This reduction was especially noteworthy in the hypercholesterolemic animals, with increased MDA levels indicating enhanced lipid peroxidation in the controls, yet with values parallel to the normocholesterolemic groups in animals fed the polyphenol-rich diets. These results point out the beneficial effects of phenolic antioxidants from fruits in preventing oxidative damage in vivo.  相似文献   

17.
A Dasgupta  T Zdunek 《Life sciences》1992,50(12):875-882
The dual role of ascorbate as an antioxidant and a prooxidant has been clearly documented in the literature. Ascorbate acts as an antioxidant by protecting human serum from lipid peroxidation induced by azo dye-generated free radicals. On the other hand, ascorbate is readily oxidized in the presence of transition metal ions, (especially cupric ion) and accelerates lipid peroxidation in tissue homogenates by producing free radicals. Interestingly, we observed an antioxidant rather than an expected prooxidant role of ascorbate when human serum supplemented with 1.2mmol/L ascorbate underwent lipid peroxidations initiated by 2mmol/L copper sulfate. The antioxidant role of ascorbate was confirmed by studying the conventional thiobarbituric acid reactive substances (TBARS) as well as by observing the protective effect of ascorbate on the copper-induced peroxidation of unsaturated and polyunsaturated fatty acids. The antioxidation protection provided by ascorbate was comparable to that of equimolar alpha-tocopherol when incubated for 24h. However, lipid peroxidation products were lower in serum supplemented with alpha-tocopherol after 48h of incubation. This effect may be attributed to the binding of copper by plpha-tocopherol after serum proteins, thus preventing direct interaction between cupric ions and ascorbate. This proposed mechanism is based on the observation that the concentration of ascorbate decreased more slowly in serum than in phosphate buffer at physiological pH. Our results also indicate an outstanding anti-oxidant property of human serum due to the chelation of transition metal ions (even at high concentrations) by various serum proteins.  相似文献   

18.
Every other day feeding (EOD) and exercise induce changes in cell metabolism. The aim of the present work was to know if both EOD and exercise produce similar effects on physical capacity, studying their physiological, biochemical and metabolic effects on muscle. Male OF-1 mice were fed either ad libitum (AL) or under EOD. After 18 weeks under EOD, animals were also trained by using a treadmill for another 6 weeks and then analyzed for physical activity. Both, EOD and endurance exercise increased the resistance of animals to extenuating activity and improved motor coordination. Among the groups that showed the highest performance, AL and EOD trained animals, ALT and EODT respectively, only the EODT group was able to increase glucose and triglycerides levels in plasma after extenuating exercise. No high effects on mitochondrial respiratory chain activities or protein levels neither on coenzyme Q levels were found in gastrocnemius muscle. However, exercise and EOD did increase β-oxidation activity in this muscle accompanied by increased CD36 levels in animals fed under EOD and by changes in shape and localization of mitochondria in muscle fibers. Furthermore, EOD and training decreased muscle damage after strenuous exercise. EOD also reduced the levels of lipid peroxidation in muscle. Our results indicate that EOD improves muscle performance and resistance by increasing lipid catabolism in muscle mitochondria at the same time that prevents lipid peroxidation and muscle damage.  相似文献   

19.
Seminal plasma antioxidant inhibited ascorbate/iron-induced lipid peroxidation in spermatozoa, brain and liver mitochondria. The concentration required to produce inhibition in brain and liver mitochondria was high. Denaturation of spermatozoa resulted in complete loss of antioxidant action. Maintenance of native structure was essential for action of seminal plasma antioxidant in spermatozoal lipid peroxidation. The antioxidant inhibited NADPH, Fe3+-ADP induced lipid peroxidation in microsomes and consequences of lipid peroxidation such as glucose-6-phosphatase inactivation were prevented by presence of antioxidant. It did not inhibit microsomal lipid peroxidation induced by ascorbate and iron and xanthine-xanthine oxidase.  相似文献   

20.
Effects of cocaine administration on lipid peroxidation and liver damage in immunocompromised mice fed different levels of dietary proteins were investigated. Indices of lipid peroxidation and serum aminotransferases as evidence of free radical attack and liver damage were compared in mice fed a low protein (4%) or regular protein diet (20% protein) for 3 weeks and then infected with murine leukemia virus and given daily intraperitoneal injections of increasing progressive doses of 5-45 mg.kg-1.day-1 of cocaine for 11 weeks. Cocaine administration significantly increased hepatic triglycerides, serum aminotransaminases, conjugated dienes, lipid fluorescence, and malondialdehyde levels. These changes were exacerbated by retroviral infection and also by protein undernutrition. Retroviral infection additively increased indices of cocaine-induced lipid peroxidation and hepatic damage. Significant increases in indices of lipid peroxidation and greater liver injury were also detected in similarly treated mice that received the low protein diet compared with well-nourished mice. These results show that immunocompromised mice fed low levels of dietary protein form significantly increased immunogenic lipid peroxidation adducts during cocaine treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号