首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Cardiac muscle development is characterised by the activation of contractile protein genes and subsequent modulation of expression resulting, ultimately, in the formation of a mature four-chambered organ. Myocardial gene expression is also altered in the adult in response to pathological stimuli and this is thought to contribute to the altered contractile characteristics of the diseased heart. We have examined the expression of the slow skeletal troponin T (TnT) gene in the human heart during development and in disease using whole mount in situ hybridisation and real-time quantitative (TaqMan) polymerase chain reaction (PCR). Slow skeletal TnT mRNA shows transitory and regional expression in the early foetal heart, which occurs at different times in atria and ventricles. In ventricular myocardium, expression is seen in the outer epicardial layer at a time when the coronary circulation is being established. Expression was detected at low levels in the adult human heart and was significantly increased in end-stage heart failure. Similarly, expression was readily detectable during early rat heart development and was up-regulated in pressure overload hypertrophy in adult. Together these data show for the first time that slow skeletal TnT mRNA is readily detectable during early human heart development. They further suggest that slow skeletal TnT may be responsive to myocardial stress and that elevated levels may contribute to myocardial dysfunction in adult disease. (Mol Cell Biochem 263: 91–97, 2004)  相似文献   

4.
Based on chromosomal mapping data, we recently revealed an unexpected linkage of troponin genes in the human genome: the six genes encoding striated muscle troponin I and troponin T isoforms are located at three chromosomal sites, each of which carries a troponin I-troponin T gene pair. Here we have investigated the organization of these genes at the DNA level in isolated P1 and PAC genomic clones and demonstrate close physical linkage in two cases through the isolation of individual clones containing a complete troponin I-troponin T gene pair. As an initial step toward fully characterizing this pattern of linkage, we have determined the organization and complete sequence of the locus encoding cardiac troponin I and slow skeletal troponin T and thereby also provide the first determination of the structure and sequence of a slow skeletal troponin T gene. Our data show that the genes are organized head to tail and are separated by only 2.6 kb of intervening sequence. In contrast to other troponin genes, and despite their close proximity, the cardiac troponin I and slow skeletal troponin T genes show independent tissue-specific expression. Such close physical linkage has implications for the evolution of the troponin gene families, for their regulation, and for the analysis of mutations implicated in cardiomyopathy.  相似文献   

5.
Numerous troponin T (TnT) isoforms are produced by alternative splicing from three genes characteristic of cardiac, fast skeletal, and slow skeletal muscles. Apart from the developmental transition of fast skeletal muscle TnT isoforms, switching of TnT expression during muscle development is poorly understood. In this study, we investigated precisely and comprehensively developmental changes in chicken cardiac and slow skeletal muscle TnT isoforms by two-dimensional gel electrophoresis and immunoblotting with specific antisera. Four major isoforms composed of two each of higher and lower molecular weights were found in cardiac TnT (cTnT). Expression of cTnT changed from high- to low-molecular-weight isoforms during cardiac muscle development. On the other hand, such a transition was not found and only high-molecular-weight isoforms were expressed in the early stages of chicken skeletal muscle development. Two major and three minor isoforms of slow skeletal muscle TnT (sTnT), three of which were newly found in this study, were expressed in chicken skeletal muscles. The major sTnT isoforms were commonly detected throughout development in slow and mixed skeletal muscles, and at developmental stages until hatching-out in fast skeletal muscles. The expression of minor sTnT isoforms varied from muscle to muscle and during development.  相似文献   

6.
7.
8.
9.
10.
The gene for kidney androgen-regulated protein (KAP) is expressed under androgenic control in the epithelial cells of the renal cortical proximal tubules. However, there is an androgen-independent component of the expression of this gene that occurs specifically in the outermedullary S3 segments of the proximal tubules. In these cells, the KAP gene is estrogen responsive and its expression is dependent on pituitary function. As a first step in correlating its interesting cell-specific and hormonal regulation with the structure of the gene, the genomic organization of the KAP gene was described and sequence of the gene and the proximal 1 kb of 5'-flanking DNA was determined. Sequence motifs were identified in the 5'-flanking DNA that may function in the regulation KAP gene expression by androgen, estrogen, and pituitary glycoprotein hormones. The gene is present in a single copy in the mouse genome and is 3,807 nucleotides in length. It contains 4 exons of 120, 177, 63, and 251 nucleotides and three intervening sequences of 1,450, 126, and 1,620 nucleotides. The gene exhibits a high degree of a genetic polymorphism as revealed by comparison of restriction digests of DNA from two highly inbred strains, BALB/c and C57BL/6.  相似文献   

11.
TroponinT (TnT) is an essential element in the thin filamentCa2+-regulatory system controlling striated musclecontraction. Alternative RNA splicing generates developmental andmuscle type-specific TnT isoforms differing in the hypervariableNH2-terminal region. Using avian fast skeletal muscle TnTcontaining a metal-binding segment, we have demonstrated a role of theNH2-terminal domain in modulating the conformation of TnT(Wang J and Jin JP. Biochemistry 37: 14519-14528,1998). To further investigate the structure-function relationship ofTnT, the present study constructed and characterized a recombinantprotein in which the metal-binding peptide present in avian fastskeletal muscle TnT was fused to the NH2 terminus of mouseslow skeletal muscle TnT. Metal ion or monoclonal antibody binding tothe NH2-terminal extension induced conformational changes in other domains of the model TnT molecule. This was shown by thealtered affinity to a monoclonal antibody against the COOH-terminal region and a polyclonal antiserum recognizing multiple epitopes. Protein binding assays showed that metal binding to theNH2-terminal extension had effects on the interaction ofTnT with troponin I, troponin C, and most significantly, tropomyosin.The data indicate that the NH2-terminal Tx [4-7repeats of a sequence motif His-(Glu/Ala)-Glu-Ala-His] extension confers a specific conformational modulation in the slowskeletal muscle TnT.

  相似文献   

12.
13.
We report the cloning and characterization of the alternatively spliced mouse gene zfp162, formerly termed mzfm, the homolog of the human ZFM1 gene encoding the splicing factor SF1 and a putative signal transduction and activation of RNA (STAR) protein. The zfp162 gene is about 14 kb long and consists of 14 exons and 13 introns. Comparison of zfp162 with the genomic sequences of ZFM1/SF1 revealed that the exon-intron structure and exon sequences are well conserved between the genes, whereas the introns differ in length and sequence composition. Using fluorescent in situ hybridization, the zfp162 gene was assigned to chromosome 19, region B. Screening of a genomic library integrated in lambda DASH II resulted in the identification of the 5'-flanking region of zfp162. Sequence analysis of this region showed that zfp162 is a TATA-less gene containing an initiator control element and two CCAAT boxes. The promoter exhibits the following motifs: AP-2, CRE, Ets, GRE, HNF5, MRE, SP-1, TRE, TCF1, and PU.1. The core promoter, from position -331 to -157, contains the motifs CRE, SP-1, MRE, and AP-2, as determined in transfected CHO-K1 cells and IC-21 cells by reporter gene assay using a secreted form of human placental alkaline phosphatase. The occurrence of PU.1/GRE supports the view that the zfp162 gene encodes a protein involved not only in nuclear RNA metabolism, as the human ZFM1/SF1, but also in as yet unknown macrophage-inherent functions.  相似文献   

14.
15.
In contrast to skeletal muscles that simultaneously express multiple troponin T (TnT) isoforms, normal adult human cardiac muscle contains a single isoform of cardiac TnT. To understand the significance of myocardial TnT homogeneity, we examined the effect of TnT heterogeneity on heart function. Transgenic mouse hearts overexpressing a fast skeletal muscle TnT together with the endogenous cardiac TnT was investigated in vivo and ex vivo as an experimental system of concurrent presence of two classes of TnT in the adult cardiac muscle. This model of myocardial TnT heterogeneity produced pathogenic phenotypes: echocardiograph imaging detected age-progressive reductions of cardiac function; in vivo left ventricular pressure analysis showed decreased myocardial contractility; ex vivo analysis of isolated working heart preparations confirmed an intrinsic decrease of cardiac function in the absence of neurohumoral influence. The transgenic mice also showed chronic myocardial hypertrophy and degeneration. The dominantly negative effects of introducing a fast TnT into the cardiac thin filaments to produce two classes of Ca(2+) regulatory units in the adult myocardium suggest that TnT heterogeneity decreases contractile function by disrupting the synchronized action during ventricular contraction that is normally activated as an electrophysiological syncytium.  相似文献   

16.
A protein kinase (ATP:protein phosphotransferase, EC 2.7.1.37) which catalyzes the phosphorylation of troponin T, phosvitin and casein has been purified over 2000 fold from rabbit skeletal muscle. The partial purification of this new enzyme, designated troponin T kinase, involves precipitation of contaminating proteins at pH 6.1, fractionation of the supernatant with (NH4)2SO4 and succesive column chromatographies on DEAE-cellulose, hydroxyapatite and Sepharose 6B. The chromatographic patterns on DEAE-cellulose and hydroxyapatite columns show two peaks of troponin T kinase activity. Gel filtration experiments indicate the existence of multiple, possibly aggregated, forms of the enzyme. The purified enzyme does not catalyze the phosphorylation of phosphorylase b, troponin I, troponin C, tropomyosin, protamine, or myosin light chain 2 nor does it catalyze the interconversion of glycogen synthase I into the D form. Troponin T kinase is not affected by the addition of cyclic nucleotides or AMP to the reaction mixture. Divalent cations (other than Mg2+, required for the reaction) do not stimulate the enzyme, and several are inhibitory. Other characteristics of the reaction catalyzed by troponin T kinase, such as Km values for ATP and substrate proteins, pH optima, effect of the concentration of Mg2+, substitution of ATP for GTP have also been studied.  相似文献   

17.
18.
The primary structure of the troponin C from skeletal muscle of the frog Rana esculenta has been determined. The amino acid sequence was deduced from amino acid determinations of peptides obtained after cleavage with cyanogen bromide. Overlapping peptides were isolated from tryptic digests of performic-acid-oxidized troponin C and phthalylated performic-acid-oxidized troponin C. All overlaps have been determined except for the Arg-Ile sequence at position 103--104, which has been obtained by comparison with homologous troponins C. Frog troponin C consists of one polypeptide chain containing 152 amino acids. The calculated molecular weight is 18299. There is a single cysteine residue at position 101 and a single tyrosine residue at position 112. No histidine or tryptophan residues are present. The amino-terminal amino acid is N-acetylated. The homology of frog troponin C with other skeletal and cardiac troponin C is briefly discussed.  相似文献   

19.
1. New methods of preparing troponins from slow skeletal and cardiac muscle of the chicken have been developed. The electrophoretic mobilities of slow skeletal muscle troponin subunits were different from those of the corresponding fast skeletal muscle subunits. 2. A new method for determining the amount of divalent cations bound to troponin was developed. The principle of the method is to immobilize troponin by conjugating it with Sepharose 4B resin, thus making it readily sedimentable. 3. The numbers of Sr and Ca ions bound to slow muscle troponin at concentrations sufficient to produce maximum contraction were 1.73 and 1.36 mol per mol, respectively, being nearly equal to those of cardiac troponin but half of those of fast muscle troponin. 4. The concentrations of Sr and Ca ions giving half-maximal ion binding to slow muscle troponin (K50%) were 5.5 X 10(-6) M and 4.6 X 10(-7) M, respectively. 5. K50% for Sr of cardiac troponin was significantly higher than that of slow muscle troponin. Although K50% for Sr of cardiac troponin was the same as that of fast muscle troponin, cardiac troponin bound more Sr ions than fast muscle troponin at lower Sr ion concentrations. The mechanism underlying the high sensitivity of cardiac muscle contraction to Sr ions is discussed in comparison with that of slow muscle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号