首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optimal protective effects for defense against infection require orchestration of immune responses spanning multiple host compartments and divergent local regulation at particular sites. During murine cytomegalovirus infections known to target spleen and liver, IL-12-induced IFN-gamma from NK cells is crucial for resistance. However, the roles for IL-18 and/or IL-12 in regulating hepatic IFN-gamma responses, as compared with systemic or splenic responses, have not been defined. In this report, mice genetically deficient in either IL-18 or IL-12p35 exhibited up to 95% reductions in systemic and splenic IFN-gamma responses. Surprisingly, IFN-gamma responses were preserved in the livers of IL-18-deficient, but not IL-12p35-deficient, mice. Cytokine requirements for host survival also differed. Under conditions where mice lacking IL-12p35 exhibited 100% mortality, those lacking IL-18 survived. Taken together, our results delineate contrasting compartmental requirements for IL-18 and suggest that preservation of local, hepatic IFN-gamma production is critical for host defense during murine cytomegalovirus challenge.  相似文献   

2.
The kinetics of CD8 T cell IFN-gamma responses as they occur in situ are defined here during lymphocytic choriomeningitis virus (LCMV) infections, and a unique mechanism for the innate cytokines IFN-alphabeta and IL-18 in promoting these responses is defined. Infections of mice with Armstrong or WE strains of LCMV induced an unexpectedly early day 4 IFN-gamma response detectable in serum samples and spleen and liver homogenates. Production of IFN-gamma was MHC class I/CD8 dependent, but did not require IL-12, NK cells, TCR-gammadelta T cells, MHC class II, or CD4 T cells. Peak response required specific Ag recognition, as administration of antagonist peptide partially impaired day 4 IFN-gamma induction, and viral peptide stimulation enhanced CD8 T cell IFN-gamma expression in culture. The IFN-gamma response was associated with IL-18 and IFN-alphabeta expression. Furthermore, both factors augmented peptide-driven IFN-gamma production in culture, and mice lacking IL-18 or IFN-alphabeta functions had reduced day 4 IFN-gamma. Collectively, these results demonstrate that during viral infections, there is a dramatic in vivo CD8 T cell response preceding maximal expansion of these cells, and that the mechanism supporting this response is dependent on endogenous innate cytokines. Because stimulation by microbial products is linked to innate cytokine expression, the studies also suggest a pathway for precisely limiting T cell functions to times of need.  相似文献   

3.
Identification of IFN-gamma-producing cells in IL-12/IL-18-treated mice   总被引:2,自引:0,他引:2  
Both IL-12 and IL-18 have been characterized as effective IFN-gamma-inducing cytokines. Concomitant treatment with IL-12 and IL-18 has been shown to synergistically induce IFN-gamma and may be an effective therapy for treating cancer, allergy, and infectious diseases. To understand the mechanisms underlying the strong induction of IFN-gamma by IL-12/IL-18 in mice, we focused our studies on the IFN-gamma-producing cells in various lymphoid organs and tissues and utilized the intracellular cytokine staining method to detect such cells in situ. After combined treatment with IL-12 and IL-18, IFN-gamma-positive cells in C57BL/6 mice were detected in the liver (12.18%), spleen (0.68%), bone marrow (1.80%), and peritoneum (2.12%), but not in the thymus or lymph nodes (<0.05 and <0.08%, respectively). A two-color staining method revealed that the majority of IFN-gamma-producing cells in the liver were NK1.1(+) cells, while those in the spleen were mostly CD3(+) cells, and to a lesser degree NK1.1(+) cells. Both CD4(+) and CD8(+) cells in the liver and in the spleen produced IFN-gamma. The CD19(+) B cell population was not definitely shown to produce IFN-gamma in our induction experiments. NKT cells, which are a subpopulation of NK1. 1(+) CD3(+) cells, were diminished in the liver and did not seem to contribute to IFN-gamma production arising from IL-12/IL-18 treatment. Further in vitro experiments confirmed the responsiveness of hepatic mononuclear cells to IL-12/IL-18 stimulation. This study is the first to show the IFN-gamma-producing mechanisms of IL-12/IL-18 treatment at the phenotypic level.  相似文献   

4.
IL-28 elicits antitumor responses against murine fibrosarcoma   总被引:3,自引:0,他引:3  
IL-28 is a recently described antiviral cytokine. In this study, we investigated the biological effects of IL-28 on tumor growth to evaluate its antitumor activity. IL-28 or retroviral transduction of the IL-28 gene into MCA205 cells did not affect in vitro growth, whereas in vivo growth of MCA205IL-28 was markedly suppressed along with survival advantages when compared with that of controls. When the metastatic ability of IL-28-secreting MCA205 cells was compared with that of controls, the expression of IL-28 resulted in a potent inhibition of metastases formation in the lungs. IL-28-mediated suppression of tumor growth was mostly abolished in irradiated mice, indicating that irradiation-sensitive cells, presumably immune cells, are primarily involved in the IL-28-induced suppression of tumor growth. In vivo cell depletion experiments displayed that polymorphonuclear neutrophils, NK cells, and CD8 T cells, but not CD4 T cells, play an equal role in the IL-28-mediated inhibition of in vivo tumor growth. Consistent with these findings, inoculation of MCA205IL-28 into mice evoked enhanced IFN-gamma production and cytotoxic T cell activity in spleen cells. Antitumor action of IL-28 is partially dependent on IFN-gamma and is independent of IL-12, IL-17, and IL-23. IL-28 increased the total number of splenic NK cells in SCID mice and enhanced IL-12-induced IFN-gamma production in vivo and expanded spleen cells in C57BL/6 mice. Moreover, IL-12 augmented IL-28-mediated antitumor activity in the presence or absence of IFN-gamma. These findings indicate that IL-28 has bioactivities that induce innate and adaptive immune responses against tumors.  相似文献   

5.
T cell deletion and/or inactivation were considered the leading mechanisms for neonatal tolerance. However, recent investigations have indicated that immunity develops at the neonatal stage but evolves to guide later T cell responses to display defective and/or biased effector functions. Although neonatal-induced T cell modulation provides a useful approach to suppress autoimmunity, the mechanism underlying the biased function of the T cells remains unclear. In prior studies, we found that exposure of newborn mice to Ig-PLP1, a chimera expressing the encephalitogenic proteolipid protein (PLP) sequence 139-151, induced deviated Th2 lymph node cells producing IL-4 instead of IL-2 and anergic splenic T cells that failed to proliferate or produce IFN-gamma yet secreted significant amounts of IL-2. However, if assisted with IFN-gamma or IL-12, these anergic splenic T cells regained full responsiveness. The consequence of such biased/defective T cells responses was protection of the mice against experimental allergic encephalomyelitis. In this study, investigations were performed to delineate the mechanism underlying the novel form of IFN-gamma-dependent splenic anergy. Our findings indicate that CD40 ligand expression on these splenic T cells is defective, leading to noneffective cooperation between T lymphocytes and APCs and a lack of IL-12 production. More striking, this cellular system revealed a requirement for IL-2R expression for CD40 ligand-initiated, IL-12-driven progression of T cells into IFN-gamma production.  相似文献   

6.
Diesel exhaust particles (DEP) have strong, selective Th2 adjuvant activity when inhaled with conventional Ags. We used a novel technique for measuring in vivo cytokine production to investigate possible mechanisms by which DEP might promote a Th2 response. Injection of DEP i.p. stimulated IL-6 secretion, but failed to increase IL-4, IL-10, or TNF-alpha secretion, and decreased basal levels of IFN-gamma. When injected with or before LPS, DEP had little effect on the LPS-induced TNF-alpha responses, but partially inhibited the LPS-induced IL-10 response and strongly inhibited the LPS-induced IFN-gamma response. DEP also inhibited the IFN-gamma responses to IL-12, IL-12 plus IL-18, IL-2, and poly(I.C). DEP treatment had little effect on the percentages of NK and NKT cells in the spleen, but inhibited LPS-induced IFN-gamma production by splenic NK and NKT cells. In contrast, DEP failed to inhibit the IFN-gamma response by anti-CD3 mAb-activated NKT cells. Taken together, these observations suggest that DEP inhibit Toll-like receptor ligand-induced IFN-gamma responses by interfering with cytokine signaling pathways that stimulate NK and NKT cells to produce IFN-gamma. Our observations also suggest that DEP may promote a Th2 response by stimulating production of inflammatory cytokines while simultaneously inhibiting production of IFN-gamma, and raise the possibility that the same mechanisms contribute to the association between DEP exposure and asthma.  相似文献   

7.
Chemokine responses critical for inflammation and promotion of effective innate control of murine CMV (MCMV) in liver have been shown to be dependent on immunoregulatory functions elicited by IFN-alphabeta. However, it remains to be determined whether upstream factors that promote viral sensing resulting in the rapid secretion of IFN-alphabeta in liver differ from those described in other tissues. Because plasmacytoid dendritic cells (pDCs) are known producers of high levels of systemic IFN-alpha in response to MCMV, this study examines the in vivo contribution of pDCs to IFN-alpha production in the liver, and whether production of the cytokine and ensuing inflammatory events are dependent on TLR9, MyD88, or both. We demonstrate that whereas MyD88 deficiency markedly impaired secretion of IFN-alpha, production of the cytokine was largely independent of TLR9 signaling, in the liver. MyD88 and TLR9 were needed for IFN-alpha production in the spleen. Moreover, hepatic but not splenic pDCs produced significant amounts of intracellular IFN-alpha in the absence of TLR9 function during infection. Furthermore, production of CCL2, CCL3, and IFN-gamma, as well as the accumulation of macrophages and NK cells, was not affected in the absence of functional TLR9 in the liver. In contrast, these responses were dramatically reduced in MyD88(-/-) mice. Additionally, MyD88(-/-) but not TLR9(-/-) mice exhibited increased sensitivity to virus infection in liver. Collectively, our results define contrasting compartmental functions for TLR9 and MyD88, and suggest that the infected tissue site uniquely contributes to the process of virus sensing and regulation of localized antiviral responses.  相似文献   

8.
9.
LFA-1 (CD11a/CD18) plays a key role in various inflammatory responses. Here we show that the acquired immune response to Listeria monocytogenes is highly biased toward type 1 in the absence of LFA-1. At the early stage of listeriosis, numbers of IFN-gamma producers in the liver and spleen of LFA-1(-/-) mice were markedly increased compared with heterozygous littermates and Valpha14(+)NKT cell-deficient mice, and NK cells were major IFN-gamma producers. Numbers of IL-12 producers were also markedly elevated in LFA-1(-/-) mice compared with heterozygous littermates, and endogenous IL-12 neutralization impaired IFN-gamma production by NK cells. Granulocyte depletion diminished numbers of IL-12 producers and IFN-gamma-secreting NK cells in the liver of LFA-1(-/-) mice. Granulocytes from the liver of L. monocytogenes-infected LFA-1(-/-) mice were potent IL-12 producers. Thus, in the absence of LFA-1, granulocytes are a major source of IL-12 at the early stage of listeriosis. We assume that highly biased type 1 immune responses in LFA-1(-/-) mice are caused by increased levels of IL-12 from granulocytes and that granulocytes play a major role in IFN-gamma secretion by NK cells. In conclusion, LFA-1 regulates type 1 immune responses by controlling prompt infiltration of IL-12-producing granulocytes into sites of inflammation.  相似文献   

10.
In recent years, it has become clear that neonatal exposure to Ag induces rather than ablates T cell immunity. Moreover, rechallenge with the Ag at adult age can trigger secondary responses that are distinct in the lymph node vs the spleen. The question addressed in this report is whether organ-specific secondary responses occur as a result of the diversity of the T cell repertoire or could they arise with homogeneous TCR-transgenic T cells. To test this premise, we used the OVA-specific DO11.10 TCR-transgenic T cells and established a neonatal T cell transfer system suitable for these investigations. In this system, neonatal T cells transferred from 1-day-old DO11.10/SCID mice into newborn (1-day-old) BALB/c mice migrate to the host's spleen and maintain stable frequency. The newborn BALB/c hosts were then given Ig-OVA, an Ig molecule carrying the OVA peptide, and challenged with the OVA peptide in CFA at the age of 7 wk; then their secondary responses were analyzed. The findings show that the lymph node T cells were deviated and produced IL-4 instead of IFN-gamma and the splenic T cells, although unable to proliferate or produce IFN-gamma, secreted a significant level of IL-2. Supply of exogenous IL-12 during Ag stimulation restores both proliferation and IFN-gamma production by the splenic T cells. This restorable form of splenic unresponsiveness referred to as IFN-gamma-dependent anergy required a transfer of a high number of neonatal DO11.10/SCID T cells to develop. Thus, the frequency of neonatal T cell precursors rather than repertoire diversity exerts control on the development of organ-specific neonatal immunity.  相似文献   

11.
Natural killer T (NKT) cells, a unique subpopulation of T cells, coexpress markers also present on NK cells and recognize the major histocompatibility complex class I-like CD1d1 molecule. We studied the effect of an acute virus infection on NKT cells. Mice were infected with the nonhepatotropic Armstrong strain of lymphocytic choriomeningitis virus (LCMV), and at various times postinfection, mononuclear cells from the liver, peritoneum, and spleen were isolated. It was found that within 2 to 3 days, there was a selective loss of NKT cells from the liver with an apparent rapid recovery within 8 to 14 days. There was no increase in peritoneal or splenic NKT cells, indicating that NKT cells did not traffic to these tissues. This loss of NKT cells was independent of gamma interferon (IFN-gamma) and interleukin 12 (IL-12) production, but did occur in mice treated with poly(I-C), a classical inducer of IFN-alpha/beta. The reduction in NKT cells was CD28 and fas/fasL independent and occurred via apoptosis. It was not observed in LCMV-infected DNA fragmentation factor 45-deficient mice, and an increase in active caspase 3-specific staining was found in liver NKT cells from LCMV-infected and poly(I-C)-treated mice compared to uninfected wild-type mice. Interestingly, it was also found that liver NKT cells from LCMV-infected mice were themselves infected. These results suggest that the loss of NKT cells following an acute LCMV infection could be due to the induction of IFN-alpha/beta resulting in NKT-cell apoptosis and is important for the host's immune response to LCMV.  相似文献   

12.
Traditionally, NK cells belong to the innate immune system and eliminate virus-infected cells through their germline-encoded receptors. However, NK cells were recently reported to possess memory-like functions that were predominantly provided by hepatic NK cells. Memory properties were mainly documented in contact hypersensitivity models or during cytomegalovirus infections. However, the precise role and the physiologic importance of memory-like NK cells during retroviral infections are still under investigation. Here, we show that Friend retrovirus (FV) infection of mice induced a population of phenotypically memory-like NK cells at 28 days post infection. Upon secondary antigen encounter, these NK cells showed an increased production of the pro-inflammatory cytokines IFNγ and TNFα as well as the death ligand FasL in comparison to naïve NK cells. Furthermore, we found an augmented elimination of antigen-matched but not antigen-mismatched target cells by these memory-like NK cells. In adoptive cell transfer experiments, equal antiviral activities of splenic and hepatic memory-like NK cells during the late phase of acute FV infection were found. Our results strongly imply the existence and antiviral activity of spleen and liver memory-like NK cells in FV infection, which efficiently respond upon secondary exposure to retroviral antigens.  相似文献   

13.
An acute infection with lymphocytic choriomeningitis virus (LCMV) is efficiently controlled by the cytotoxic-T-cell (CTL) response of the host, and LCMV titers in the spleen and peripheral solid organs usually fall sharply after day 4 to 6 postinfection. Surprisingly, infection of immunodeficient recombination-activating gene 2-deficient (RAG2-/-) mice with 5 x 10(2) PFU of LCMV-WE causes about 80-fold-lower LCMV titers in the spleen on day 4 postinfection compared with C57BL/6 control mice. This could not be attributed to NK cell activity, since common gamma-chain-deficient RAG2-/- mice lacking NK cells show low LCMV titers comparable to those for RAG2-/- mice. Furthermore, the reduced early LCMV production in spleens could not be explained by an enhanced gamma interferon production in RAG2-/- mice. Analysis of mutant mice exhibiting various defects in the splenic microarchitecture, including (i) tumor necrosis factor alpha-negative (TNF-alpha-/-), lymphotoxin alpha-negative (LTalpha-/-), B-cell-deficient muMT mice, (ii) immunoglobulin M-negative mice, and (iii) RAG2-/- mice reconstituted with wild-type versus TNF-alpha-/- LTalpha-/- B cells, revealed a clear correlation between an intact splenic marginal zone, rapid early replication of LCMV in the spleen, and efficient CTL induction. These results suggest that by the preferential infection of the highly organized splenic microarchitecture, LCMV seems to successfully exploit one of the key elements in the chain of the adaptive immune system. Not only does the early tropism of LCMV for the splenic marginal zone trigger a potent immune response, but at the same time the marginal zone may also become a target of early CTL-mediated immunopathology that impairs immune responsiveness.  相似文献   

14.
NK T lymphocytes are characterized by their ability to promptly generate IL-4 and IFN-gamma upon TCR engagement. Here, we demonstrate that these cells can also be fully activated in the absence of TCR cross-linking in response to the proinflammatory cytokine IL-18 associated with IL-12. NK T cells stimulated with IL-18 plus IL-12 proliferated, killed Fas+ target cells, and produced high levels of IFN-gamma without IL-4. In these conditions, IFN-gamma production was at least 10-fold higher than that upon TCR cross-linking. Interestingly, a 2-h pretreatment with IL-12 plus IL-18 sufficed to maintain the high IFN-gamma-producing potential during subsequent stimulation with anti-TCR mAbs or with the specific Ag alpha-galactosylceramide. Similar effects were observed in vivo, because splenic CD4+ NK T cells from MHC class II-deficient mice secreted IFN-gamma without further stimulation when removed 2 h after a single injection of IL-12 plus IL-18. In conclusion, our evidence for activation of NK T lymphocytes in response to IL-18 plus IL-12 in the absence of TCR engagement together with the maintenance of preferential IFN-gamma vs IL-4 production upon subsequent exposure to specific Ags is consistent with the active participation of this cell population in innate as well as acquired cellular immune responses.  相似文献   

15.
During the innate immune response to Listeria monocytogenes (LM), the secretion of IFN-gamma is crucial in controlling bacterial numbers. We have shown recently that CD8 T cells have the ability to rapidly secrete IFN-gamma independent of Ag, in response to IL-12 and IL-18, during a LM infection. In the current study, we compared the relative abilities of NK and CD8 T cells to provide innate immune protection. Upon transfer of either NK or memory OT-I T cells (specific for the OVA protein) into IFN-gamma-deficient hosts that were infected subsequently with wild-type LM, both cell types were found in the spleen and had the ability to secrete IFN-gamma. However, the OT-I T cells were more effective at providing innate immune protection as determined by spleen and liver LM burdens. We used immunocytochemistry to demonstrate that upon infection with LM, marginal zone macrophages were localized to the T cell area of the splenic follicle. Transferred memory OT-I T cells were also found in the T cell area of the spleen, co-localizing with the LM and macrophages. In sharp contrast, NK cells were found predominantly in the red pulp region of the spleen. In addition, memory OT-I T cells were also found to be associated with LM lesions in the liver. These results highlight the importance of CD8 T cells in innate immune responses to LM and suggest that their increased protective ability compared with NK cells is the result of their colocalization with LM and macrophages.  相似文献   

16.
The IFN-gamma-inducible proteins monokine induced by IFN-gamma (Mig) and chemokine responsive to gamma-2 (Crg-2) can contribute to IL-12-induced antiangiogenic and leukocyte-recruiting activities, but the extent to which leukocytes vs parenchymal cells in different organs contribute to the production of these molecules remains unclear. The results presented herein show that IFN-gamma-dependent induction of Mig and Crg-2 gene expression can occur in many nonlymphoid organs, and these genes are rapidly induced in purified hepatocytes isolated from mice treated with IL-2 plus IL-12, or from Hepa 1-6 hepatoma cells treated in vitro with IFN-gamma. In addition to depending on IFN-gamma, the ability of IL-12 or IL-2/IL-12 to induce Mig and Crg-2 gene expression in purified hepatocytes also is accompanied by the coordinate up-regulation of the IFN-gamma R alpha and beta-chains, in the absence of IL-12R components. Supernatants of primary hepatocytes obtained from mice treated in vivo with IL-2/IL-12 or from hepatocytes treated in vitro with IFN-gamma contain increased chemotactic activity for enriched human and mouse CD3(+) T cells, as well as mouse DX5(+) NK cells. The hepatocyte-derived chemotactic activity for mouse T cells but not NK cells was ablated by Abs specific for Mig and Crg-2. These results suggest that parenchymal cells in some organs may contribute substantially to initiation and/or amplification of inflammatory or antitumor responses.  相似文献   

17.
18.
Interferon (IFN)-gamma plays an essential role in host defense against infection with Mycobacterium tuberculosis, and its synthesis is critically regulated by interleukin (IL)-12, IL-18 and the recently identified IL-23. The present study was designed to determine the roles of these cytokines in IFN-gamma-mediated host defenses against M. tuberculosis. For this purpose, we compared host protective responses in IL-12p40 and IL-18 double-knockout (DKO) mice (which lacked both IL-12/IL-18 and also IL-23) and IFN-gamma gene-disrupted (GKO) mice. DKO mice were more resistant to the infection than GKO mice, as indicated by their extended survival and reduced live colony numbers in spleen, liver and lung. IFN-gamma was detected by ELISA in liver and lung homogenates, but not in spleen and serum, and in all organs by RT-PCR in DKO mice at comparable or reduced levels to those in wild-type mice. IFN-gamma production was reduced by depletion of CD4+ T cells, but not of natural killer (NK), NKT, gammadeltaT and dendritic cells. Neutralization of IFN-gamma or TNF-alpha by specific monoclonal antibodies (mAbs) significantly shortened the survival time of the infected DKO mice. Furthermore, anti-TNF-alpha mAb partially attenuated IFN-gamma synthesis in the liver of these mice. Finally, the expression level of inducible nitric oxide synthase (iNOS) mRNA in the spleen, liver and lung was considerable in DKO mice but only marginal or undetected in GKO mice. Our results indicate the presence of IL-12-, IL-18- and IL-23-independent host protective responses against mycobacterial infection mediated by IFN-gamma, which was secreted from helper T cells.  相似文献   

19.
Hosts after severe burn injury are known to have a defect in the Th1 immune response and are susceptible to bacterial infections. We herein show that liver NK cells are potent IFN-gamma producers early after burn injury. However, when mice were injected with LPS 24 h after burn injury, IFN-gamma production from liver mononuclear cells (MNC; which we previously showed to be NK cells) was suppressed, and the serum IFN-gamma concentration did not increase, while serum IL-10 conversely increased compared with control mice. Interestingly, a single injection of IL-18 simultaneously with LPS greatly restored the serum IFN-gamma concentration in mice with burn injury and also increased IFN-gamma production from liver MNC. Nevertheless, a single IL-18 injection into mice simultaneously with LPS was no longer effective in the restoration of serum IFN-gamma and IFN-gamma production from the liver MNC at 7 days after burn injury, when mice were considered to be the most immunocompromised. However, IL-18 injections into mice on alternate days beginning 1 day after burn injury strongly up-regulated LPS-induced serum IFN-gamma levels and IFN-gamma production from liver and spleen MNC of mice 7 days after burn injury and down-regulated serum IL-10. Furthermore, similar IL-18 therapy up-regulated serum IFN-gamma levels in mice with experimental bacterial peritonitis 7 days after burn injury and greatly decreased mouse mortality. Thus, IL-18 therapy restores the Th1 response and may decrease the susceptibility to bacterial infection in mice with burn injury.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号