首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using both biochemical and morphological methods, the membrane orientation of plasma membrane vesicles from rat liver which are capable of catalysing the active transport of amino acids was investigated. In intact vesicles, the plasma membrane enzyme (Na+ + K+)-ATPase displays only a minor portion of its total activity which is greatly increased upon vesicle disruption. The same intact vesicles show an almost maximal binding of ouabain, which binds only to the extracellular side of the plasma membrane. A freeze-fracture analysis of the vesicles shows that a distinct population of relatively large vesicles have predominantly the in vivo membrane orientation. These large vesicles are labelled with numerous filipin-sterol complexes following exposure to the cholesterol probe, filipin, and are therefore assumed to be plasma membrane vesicles. A population of smaller vesicles with mainly an inside-out orientation were not labelled with filipin and are probably microsomes. The data obtained with both biochemical and ultrastructural techniques indicate that the plasma membrane vesicles isolated from rat liver for transport studies are mostly (at least 70%) orientated as in vivo, i.e. inside-in.  相似文献   

2.
3.
Mutants of Escherichia coli K-12 requiring high concentrations of branched-chain amino acids for growth were isolated. One of the mutants was shown to be defective in transport activity for branched-chain amino acids. The locus of the mutation (hrbA) was mapped at 8.9 min on the E. coli genetic map by conjugational and transductional crosses. The gene order of this region is proC-hrbA-tsx. The hrbA system was responsible for the uptake activity of cytoplasmic membrane vesicles. It was not repressed by leucine. The substrate specificities and kinetics of the uptake activities were studied using cytoplasmic membrane vesicles and intact cells of the mutants grown in the presence or absence of leucine. Results showed that there are three transport systems for branched-chain amino acids, LIV-1, -2, and -3. The LIV-2 and -3 transport systems are low-affinity systems, the activities of which are detectable in cytoplasmic membrane vesicles. The systems are inhibited by norleucine but not by threonine. The LIV-2 system is also repressed by leucine. The LIV-1 transport system is a high-affinity system that is sensitive to osmotic shock. When the leucine-isoleucine-valine-threonine-binding protein is derepressed, the high-affinity system can be inhibited by threonine.  相似文献   

4.
The translocation of UDP-glucose and GDP-mannose from an external to a luminal compartment has been examined in rat liver vesicles derived from the rough endoplasmic reticulum (RER). RER vesicles with the same topographical orientation as in vivo were incubated with a mixture of [3H]UDP-glucose and UDP-[14C]glucose to demonstrate that the intact sugar nucleotide was translocated into the lumen of the vesicles. The translocation of UDP-glucose was dependent on temperature and was saturable at high concentrations of the sugar nucleotide. The transfer of glucose to endogenous acceptors was dependent on the translocation of UDP-glucose into the lumen of the RER since leaky vesicles resulted in both a decrease in transport and transfer of glucose to endogenous acceptors. Preliminary results suggest that the mechanism of UDP-glucose transport into RER-derived vesicles is via a coupled exchange with luminal UMP. Using the same experimental approach to detect translocation of UDP-glucose into the lumen of RER vesicles, we were unable to detect transport of GDP-mannose. Incubation of leaky vesicles with GDP-mannose resulted in stimulation of the amount of mannose transferred to endogenous acceptors, in marked contrast to that observed for UDP-glucose and UDP-N-acetylglucosamine. These results suggest that whereas UDP-glucose is translocated across the RER membrane in vitro, GDP-mannose is not transported. In addition, these results tentatively suggest that there is asymmetric synthesis of the lipid-linked oligosaccharides within the membrane of the RER.  相似文献   

5.
A transport system for polyamines was studied with both intact cells and membrane vesicles of an Escherichia coli polyamine-deficient mutant. Polyamine uptake by intact cells and membrane vesicles was inhibited by various protonophores, and polyamines accumulated in membrane vesicles when D-lactate was added as an energy source or when a membrane potential was imposed artificially by the addition of valinomycin to K+-loaded vesicles. These results show that the uptake was dependent on proton motive force. Transported [14C]putrescine and [14C]spermidine were not excreted by intact cells upon the addition either of carbonyl cyanide m-chlorophenylhydrazone, A23187, and Ca2+ or of an excess amount of nonlabeled polyamine. However, they were excreted by membrane vesicles, although the degree of spermidine efflux was much lower than that of putrescine efflux. These results suggest that the apparent unidirectionality in intact cells has arisen from polyamine binding to nucleic acids, thus giving rise to a negligible free intracellular concentration of polyamines. Polyamine uptake, especially putrescine uptake, was inhibited strongly by monovalent cations. The Mg2+ ion inhibited spermidine and spermine uptake but not putrescine uptake.  相似文献   

6.
Measurement of certain membrane-bound enzymic activities was used to study the orientation of the outer membrane of the double-membraned forespore of Bacillus megaterium KM. 2. Adenosine triphosphatase, NADH dehydrogenase and L-malate intact protoplasts, but were readily detected in intact stage II or IV forespores, consistent with reversed polarity of the outer forespore membrane relative to the mother-cell plasma membrane. 3. Measurement of NADH oxidase activity revealed that intact stage III forespores had the same high affinity for NADH as protoplast membrane preparations and protoplast lystates, consistent with ready access of NADH to oxidation sites on the outer forespores membrane. 4. Forespores and protoplasts showed osmometric behaviour in solutions of non-permanent solutes consistent with the presence of an intact permeability barrier in these structures.  相似文献   

7.
Membrane vesicles have been isolated by a modified procedure from Rhodopseudomonas sphaeroides, grown phototrophically under high light intensity. In addition,chromatophores have been isolated from this organism grown phototrophically with low light intensities.Structural, chemical and functional properties of both preparations have been investigated and compared. The orientation of the membrane preparations has been studied by freeze-etch electron microscopy, the localization of cytochrome c2, and light-driven active transport of amino acids and Ca2+. The results demonstrate that the orientation of the vesicle membrane is the same as the cytoplasmic membrane of intact cells; the membranes in chromatophores, however, have an inverted orientation.On a dry weight basis, the membrane vesicles contain less protein, carotenoids and bacteriochlorophyll and more lipids than do chromatophores. Qualitatively, however, the composition of both preparations is similar.It is concluded that the intracytoplasmic structures from which the chromatophores are derived are structurally and functionally similar to (and most likely continuous with) the cytoplasmic membranes from which the vesicles are derived.  相似文献   

8.
Rodobacter capsulatus cells, which were cultured anaerobically in high light intensity, had fewer foldings in the cytoplasmic membrane than those which were grown in lower light intensities. Spheroplast-derived membrane fractions obtained from cells cultured under high light intensity contained a high yield of large right-side-out membrane vesicles. The right-side-out vesicles catalyzed reversible light-induced proton efflux as did intact cells. Nucleotide transport activity was also catalyzed by these membrane vesicles. This activity was indirectly monitored by measurement of photophosphorylation or hydrolysis of externally added diphospho- and triphosphonucleosides. These enzymatic activities occur inside the cytoplasmic membrane of spheroplasts and membrane vesicles and therefore require the transport of the externally added reagents. The indirect measurements of transport were complemented by the demonstration of direct uptake of radiolabeled nucleotides into the membrane vesicles. These data support the suggestion that a nucleotide transporter located in the cytoplasmic membrane of R. capsulatus bacteria mediates these activities.  相似文献   

9.
Membrane fractions were isolated from Streptococcus faecalis cells of a glycolyzing microorganism, devoid of the respiratory chain, using the methods of osmotic shock of the protoplasts, ultrasonic treatment of the cells and ultrasonic treatment of the protoplasts. All fractions possessed the ATPase activity, the highest activity being observed in the fraction isolated by ultrasonication of the protoplasts. All preparations were estimated with respect to the presence of vesicles, formed by the "inside-out" and "inside-in" membranes, using ATPase as a marker of the membrane orientation. In the membrane fractions obtained by ultrasonication of the protoplasts, the "inside-out" vesicles were prevalent. ATP-dependent energization of the membranes, sensitive to the action of dicyclohexylcarbodiimide and tetrachlorotrifluoromethyl benzimidazole, was demonstrated by measuring the transport of the lipophylic anion of phenyldicarbaundecaborane and aniline naphthalene sulfonate fluorescence.  相似文献   

10.
Glutaraldehyde prefixation causes a considerable inactivation of the acid phosphatase of yeast protoplasts in dependence on the duration of aldehyde influence. Lead ions necessary for ultracytochemical demonstration effect a still stronger inhibition of enzymatic activity. Prefixation, however, protects the enzyme from further inhibition by lead. At pH 4.4 in intact cells acid phosphatase activities are mainly localized in the periplasmic space and in vesicles fused with the plasma membrane. The cell wall and cytoplasm usually remain free of reaction products. On the cell surface activities are found in form of globular lead deposits. At pH 5.2 and 6.3 the periplasmic activity appears decreased compared to that at lower pH values and the intracellular activity is increased. The plasma membrane of protoplasts is completely free of precipitates. The intracellular activity sites of protoplasts (cisternae of endoplasmic reticulum and/or Golgi-like system, small vesicles, central vacuole, nuclear envelope) are the same as for intact cells. The occurrence of at least two forms of acid phosphatase in S. cerevisiae id deduced.  相似文献   

11.
A mixture of small (0.43-mum diameter) and large (0.62-mum diameter) low-density vesicles from spheroplasts of Saccharomyces cerevisiae was fractionated by rate centrifugation in a gradient of 0 to 8% (wt/vol) Ficoll to yield fractions rich (90 to 95%) in small or large vesicles. The large, but not small, vesicles swelled when diluted into mannitol solutions containing less than 0.4 M mannitol. The pH-electrophoretic mobility curve of the large vesicles showed that they are probably enclosed in a phospholipid-protein membrane. The dyes neutral red and toluidine blue, accumulated into large vesicles by intact cells and spheroplasts, were largely lost from large vesicles when these were separated from stained spheroplasts. Sudan black III stained small and large vesicles, both classes of vesicle retaining the stain on separation. Fractions rich in large vesicles contained proportionately more phospholipid and less free sterols, diacylglycerols, and free fatty acids compared with those enriched in small vesicles. The two classes of vesicles contained about the same proportions of esterified sterols and triacylglycerols. The free fatty acids in both small and large vesicles were free from unsaturated fatty-acyl residues; diacylglycerols and triacylglycerols contained appreciable proportions of unsaturated fatty-acyl residues. Small vesicles were richer in lipase activity, whereas the larger vesicles contained greater beta-glucanase and alpha-mannosidase activities. Phospholipase activity could not be detected in any of the fractions.  相似文献   

12.
Fusion of exocytotic vesicles with the plasma membrane gives rise to an increase in membrane surface area, whereas the surface area is decreased when vesicles are internalized during endocytosis. Changes in membrane surface area, resulting from fusion and fission of membrane vesicles, can be followed by monitoring the corresponding proportional changes in membrane capacitance. Using the cell‐attached configuration of the patch‐clamp techniques we were able to resolve the elementary processes of endo‐ and exocytosis in yeast protoplasts at high temporal and spatial resolution. Spontaneous capacitance changes were predominantly in the range of 0.2–1 fF which translates to vesicle diameters of 90–200 nm. The size distribution revealed that endocytotic vesicles with a median at about 132 nm were smaller than exocytotic vesicles with a median at 155 nm. In energized and metabolizing protoplasts, endo‐ and exocytotic events occurred at frequencies of 1.6 and 2.7 events per minute, respectively. Even though these numbers appear very low, they are in good agreement with the observed growth rate of yeast cells and protoplasts.  相似文献   

13.
l-Carnosine was shown to be transported into rabbit renal brush-border membrane vesicles by an Na+ - independent mechanism. The transport was competitively inhibited by glycyl-l-proline. Various di- and tripeptides inhibited l-carnosine transport, whereas free amino acids did not. Inhibition studies showed that blocking the free amino and carboxyl groups of the peptide reduced its affinity for the transport carrier. Under the conditions in which there was no detectable hydrolysis of l-carnosine in the medium, intravesicular contents showed a 30% hydrolysis of the peptide within the vesicles. Disruption of membrane vesicles with deoxycholate resulted in a 3-fold increase in l-carnosine hydrolyzing activity over untreated intact vesicles. Based on these observations, a model for peptide transport is proposed in which transport of the intact peptide across the membrane is followed by its partial or complete hydrolysis by a membrane peptidase whose active site is on the cytoplasmic side of the membrane.  相似文献   

14.
Nomarski interference microscopy technique showed that the cell juice of the Kiwi fruit ( Actinidia chinensis Planch.) is rich in membrane vesicles that resemble protoplasts and free vacuoles. These vesicles are obtained without enzyme or chemical treatment and probably arise from the rupture and revesiculation of the tonoplasts that limit the cytoplasmic strands of the cells. Vacuole fragmentation in situ probably causes the tonoplast to recombine around the vacuolar sap as well as around the cytoplasmic strands, which implies either original or inverse orientation of the inner face. Electrophysiological measurements in vesicles judged to have the original membrane orientation showed that their polarization was inside positive, the same as central vacuoles of protoplasts and isolated vacuoles.  相似文献   

15.
The characteristics of a mutant (hrbA) of Escherichia coli K-12 that is defective in a leucine-nonrepressible transport system, the LIV-3 system, for branched-chain amino acids were described previously (I. Yamato et al., J. Bacteriol 138:24-32, 1979). New mutants requiring a high concentration of isoleucine for growth were isolated from strain B763 (hrbA ileA) after mutagenesis with ethyl methane sulfonate. These mutants had a defect of the leucine-repressible transport activities for branched-chain amino acids of the parental strain. One of these mutants, strain B7634, had defects of two independent genetic loci (hrbBC and hrbD). The genes hrbBC were mapped at min 76 near malT, and the gene hrbD mapped at min 77 near xyl on the E. coli genetic map. The substrate specificity, kinetic properties, and source of coupling energy of the transport system coded for by each of these genes were studied using cytoplasmic membrane vesicles and intact cells. The results identified three transport systems with characteristic features other than the LIV-3 system. The hrbB and hrbC systems are responsible for the uptake activites of the LIV-2 system, with a high Km value, and the LIV-1 system, with a low Km value, respectively. Both activities are repressed by leucine and inhibited by threonine and the b(--) isomer of 2-aminobicycloheptyl-2-carboxylic acid. They both utilize adenosine 5'-triphosphate as coupling energy and are not detected in cytoplasmic membrane vesicles. The hrbD system is responsible for the LIV-4 system, with a high Km value. Its activity is repressed by leucine and partially inhibited by threonine. It is detected in cytoplasmic membrane vesicles with a proton motive force as the driving energy.  相似文献   

16.
A new procedure for the isolation of membrane vesicles from Acholeplasma laidlawii cells is described. The membrane vesicles are completely free from contaminations of whole cells and cell debris and represent a homogeneous fraction as shown by electron microscopy, Ficoll density-gradient centrifugation, and titration on agar plate. Absence of cytoplasmic contaminations was confirmed by double-labelling of membranes with 3H-oleic acid and 14C-uridine, as well as by distribution of specific marker enzymes of membranes and cytoplasm. On the basis of light-scattering and electron microscopy, the vesicular nature of these membranes was established. The vesicles had the same orientation as intact cells (absence on membrane vesicles of ATPase and NADH dehydrogenase activities, localized in the inner surface of membrane). The respiratory activity of the membrane vesicles was low and was not stimulated by exogenous substrates, the respiratory chain of the vesicles being reduced and terminated by flavoproteins. The ability of membrane vesicles to take up carbohydrates was shown.  相似文献   

17.
Riechers DE  Wax LM  Liebl RA  Bush DR 《Plant physiology》1994,105(4):1419-1425
Plasma membrane vesicles were isolated from mature leaves of lambsquarters (Chenopodium album L.) to investigate whether this membrane is a barrier to glyphosate uptake and whether surfactants possess differential abilities to enhance glyphosate permeability. Amino acids representing several structural classes showed [delta]pH-dependent transport, indicating that the proteins necessary for active, proton-coupled amino acid transport were present and functional. Glyphosate uptake was very low compared to the acidic amino acid glutamate, indicating that glyphosate is not utilizing an endogenous amino acid carrier to enter the leaf cells and that the plasma membrane appears to be a significant barrier to cellular uptake. In addition, glyphosate flux was much lower than that measured for either bentazon or atrazine, both lipid-permeable herbicides that diffuse through the bilayer. Glyphosate uptake was stimulated by 0.01% (v:v) MON 0818, the cationic surfactant used in the commercial formulation of this herbicide for foliar application. This concentration of surfactant did not disrupt the integrity of the plasma membrane vesicles, as evidenced by the stability of imposed pH gradients and active amino acid transport. Nonionic surfactants that disrupt the cuticle but that do not promote glyphosate toxicity in the field also increased glyphosate transport into the membrane vesicles. Thus, no correlation was observed between whole plant toxicity and surfactant-aided uptake. Current data suggest that surfactant efficacy may be the result of charged surfactants' ability to diffuse away from the cuticle into the subtending apoplastic space, where they act directly on the plasma membrane to increase glyphosate uptake.  相似文献   

18.
To obtain a clearer concept of the mechanism of organic solute transport in mammalian cells, we have attempted to reconstitute a functional transport system for amino acids from plasma membranes of Ehrlich ascites cells. Purified plasma membranes were dissolved in 2% Na cholate--4 M urea, a mixture which brought over 85% of the membrane proteins into solution. After centrifugation of the solubilized material for 2 hrs at 100,000 x g, the supernatant was dialyzed in the cold for 20 hrs with additional lipid. The reformed vesicles were tested for the ability to transport amino acids. The preliminary results obtained show that the uptake of alpha-aminoisobutyric acid can be inhibited by L-methionine and much less by L-leucine as would be predicted from the known properties of alpha-aminoisobutyric transport in the intact cells. In addition, it has been possible to show accelerated efflux of intravesicular phenylalanine when phenylalanine is added to the trans side (medium side). The data are consistent with the conclusion that there is carrier mediated transport in the reconstituted vesicles.  相似文献   

19.
Membrane vesicles were prepared from Micrococcus denitrificans by osmotic shock of lysozyme spheroplasts. These vesicles concentrated 4 amino acids via two systems; one for glycine-alanine and the other for asparagine-glutamine. Amino acid transport was coupled to the membrane-bound electron transport system and involved interactions of the primary dehydrogenases, cytochromes, cytochrome oxidase and oxygen. After transport the amino acids were recovered unchanged from the vesicles. The substrates of the membrane-bound electron transport system d-lactate, l-lactate, formate, succinate, NADH, glucose-6-phosphate and α-glycerolphosphate all stimulated transport at least 2-fold. Both oxygen and nitrate could serve as terminal electron acceptors with vesicles prepared from cells grown anaerobically with nitrate. Anaerobic transport in the presence of nitrate was not inhibited by cyanide but was inhibited by nitrite. A system stimulated by substrates of the electron transport system but independent of added terminal electron acceptors was found also in the vesicles prepared from anaerobically grown cells. Addition of one combination of two substrates for electron transport produced an amino acid uptake 12 to 15% greater than the sum of the rates for each substrate added singly. Additions of other combinations gave rates of transport less than the sum of the rates of each added alone. Both the dehydrogenase activities and the coupling of electron transport to amino acid uptake were modified by changing the growth conditions and differences between the effectiveness of each substrate for each of the two transport systems could be detected. The efficiency of the vesicles per protoheme, the prosthetic group of the membrane-bound cytochrome b, with d-lactate as substrate was 27% for glutamine and 6% for glycine of the rates of transport of these two amino acids in intact cells when driven by endogenous respiration. Assuming one amino acid transported per electron, the transport of glycine utilized 1% of the respiratory capacity with glucose-6-phosphate as substrate. The coupling to the electron transport with the other substrates was less efficient. It appeared that a small portion of the total capacity of the electron transport system was coupled to amino acid transport and the coupling to respiration, as well as the primary dehydrogenase activities and terminal cytochrome oxidase, were modified in response to the conditions of growth.  相似文献   

20.
The mechanisms of renal transport of short chain fatty acids by luminal membrane vesicles prepared from pars convoluta or pars recta of rabbit proximal tubule were studied by a Millipore filtration technique and by a spectrophotometric method using a potential-sensitive carbocyanine dye. Both luminal membrane vesicle preparations take up propionate and butyrate by strictly Na+-dependent transport systems, although with different characteristics. The uptake of short chain fatty acids by membrane vesicles from the pars convoluta was insensitive to changes in membrane potential, which is indicative of electroneutral transport of these compounds. Furthermore, kinetic studies showed that the Na+-dependent, but electrically silent transport of propionate is saturable (Km = 10.9 +/- 1.1 mM and Vmax = 3.6 +/- 0.2 nmol/mg protein per 20 s) and is unaffected by the presence of L- and D-lactate, indicating that these monocarboxylic acids did not share the same common transport system. In the luminal membrane vesicles from the pars recta, the uptake of propionate and butyrate was mediated by an Na+-dependent electrogenic transport process, since addition of the organic compounds to these vesicle/dye suspensions depolarized the membrane vesicles and the renal uptake of propionate and butyrate was enhanced by K+ diffusion potential induced by valinomycin. Competition experiments revealed that in contrast to the transport of propionate by vesicles from the pars convoluta, the Na+-dependent electrogenic transport of short chain fatty acids in vesicles from the pars recta occurred via the same transport system that is responsible for the reabsorption of L- and D-lactate in this region of rabbit kidney proximal tubule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号