首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 273 毫秒
1.
Integration of retroviral DNA into the host cell genome requires the interaction of retroviral integrase (IN) protein with the outer ends of both viral long terminal repeats (LTRs) to remove two nucleotides from the 3' ends (3' processing) and to join the 3' ends to newly created 5' ends in target DNA (strand transfer). We have purified the IN protein of human immunodeficiency virus type 1 (HIV-1) after production in Saccharomyces cerevisiae and found it to have many of the properties described for retroviral IN proteins. The protein performs both 3' processing and strand transfer reactions by using HIV-1 or HIV-2 attachment (att) site oligonucleotides. A highly conserved CA dinucleotide adjacent to the 3' processing site of HIV-1 is important for both the 3' processing and strand transfer reactions; however, it is not sufficient for full IN activity, since alteration of nucleotide sequences internal to the HIV-1 U5 CA also impairs IN function, and Moloney murine leukemia virus att site oligonucleotides are poor substrates for HIV-1 IN. When HIV-1 att sequences are positioned internally in an LTR-LTR circle junction substrate, HIV-1 IN fails to cleave the substrate preferentially at positions coinciding with correct 3' processing, implying a requirement for positioning att sites near DNA ends. The 2 bp normally located beyond the 3' CA in linear DNA are not essential for in vitro integration, since mutant oligonucleotides with single-stranded 3' or 5' extensions or with no residues beyond the CA dinucleotide are efficiently used. Selection of target sites is nonrandom when att site oligonucleotides are joined to each other in vitro. We modified an in vitro assay to distinguish oligonucleotides serving as the substrate for 3' processing and as the target for strand transfer. The modified assay demonstrates that nonrandom usage of target sites is dependent on the target oligonucleotide sequence and independent of the oligonucleotide used as the substrate for 3' processing.  相似文献   

2.
Retroviral integration requires cis-acting sequences at the termini of linear double-stranded viral DNA and a product of the retroviral pol gene, the integrase protein (IN). IN is required and sufficient for generation of recessed 3' termini of the viral DNA (the first step in proviral integration) and for integration of the recessed DNA species in vitro. Human immunodeficiency virus type 1 (HIV-1) IN, expressed in Escherichia coli, was purified to near homogeneity. The substrate sequence requirements for specific cleavage and integration of retroviral DNA were studied in a physical assay, using purified IN and short duplex oligonucleotides that correspond to the termini of HIV DNA. A few point mutations around the IN cleavage site substantially reduced cleavage; most other mutations did not have a drastic effect, suggesting that the sequence requirements are limited. The terminal 15 bp of the retroviral DNA were demonstrated to be sufficient for recognition by IN. Efficient specific cutting of the retroviral DNA by IN required that the cleavage site, the phosphodiester bond at the 3' side of a conserved CA-3' dinucleotide, be located two nucleotides away from the end of the viral DNA; however, low-efficiency cutting was observed when the cleavage site was located one, three, four, or five nucleotides away from the terminus of the double-stranded viral DNA. Increased cleavage by IN was detected when the nucleotides 3' of the CA-3' dinucleotide were present as single-stranded DNA. IN was found to have a strong preference for promoting integration into double-stranded rather than single-stranded DNA.  相似文献   

3.
Processing of viral DNA by retroviral integrase leaves a dinucleotide single-strand overhang in the unprocessed strand. Previous studies have stressed the importance of the 5' single-stranded (ss) tail in the integration process. To characterize the ss-tail binding site on M-MuLV integrase, we carried out crosslinking studies utilizing a disintegration substrate that mimics the covalent intermediate formed during integration. This substrate carried reactive groups at the 5' ss tail. A bromoacetyl derivative with a side chain of 6 A was crosslinked to the mutant IN 106-404, which lacks the N-terminal domain, yielding a crosslinked complex of 50 kDa. Treatment of IN 106-404 with N-ethylmaleimide (NEM) prevented crosslinking, suggesting that Cys209 was involved in the reaction. The reactivity of Cys209 was confirmed by crosslinking of a more specific derivative carrying maleimide groups that spans 8A approximately. In contrast, WT IN was not reactive, suggesting that the N-terminal domain modifies the reactivity of the Cys209 or the positioning of the crosslinker side chain. A similar oligonucleotide-carrying iodouridine at the 5'ss tail reacted with both IN 106-404 and WT IN upon UV irradiation. This reaction was also prevented by NEM, suggesting that the ss-tail positions near a peptide region that includes Cys209.  相似文献   

4.
5.
In vitro activities of purified visna virus integrase.   总被引:7,自引:5,他引:2       下载免费PDF全文
Although integration generally is considered a critical step in the retrovirus life cycle, it has been reported that visna virus, which causes degenerative neurologic disease in sheep, can productively infect sheep choroid plexus cells without detectable integration. To ascertain whether the integrase (IN) of visna virus is an inherently defective enzyme and to create tools for further study of integration of the phylogenetically related human immunodeficiency virus type 1 (HIV-1), we purified visna virus IN by using a bacterial expression system and applied various in vitro oligonucleotide-based assays to studying this protein. We found that visna virus IN demonstrates the full repertoire of in vitro functions characteristic of retroviral integrases. In particular, visna virus IN exhibits site-specific endonuclease activity following the invariant CA found two nucleotides from the 3' ends of viral DNA (processing activity), joins processed oligonucleotides to various sites on other oligonucleotides (strand transfer or integration activity), and reverses the integration reaction by resolving a complex that mimics one end of viral DNA integrated into host DNA (disintegration activity). In addition, although it has been reported that purified HIV-1 IN cannot specifically nick visna virus DNA ends, purified visna virus IN does specifically process and integrate HIV-1 DNA ends.  相似文献   

6.
The disintegration activity of Moloney murine leukemia virus (M-MuLV) integrase (IN) was investigated through structural and sequence modifications of a Y substrate that resembles an integration intermediate. The Y substrates, constructed from individual oligonucleotides, contain a single viral long terminal repeat (LTR) joined to a nicked target DNA. Truncation of the double-stranded LTR sequences distal to the conserved 5'-CA-3' dinucleotide progressively diminished disintegration activity. M-MuLV IN was also able to catalyze disintegration of a heterologous double-stranded LTR sequence. Significantly, the activity of M-MuLV IN on single-stranded LTR Y substrates was more dependent on the sequence and length of the LTR strand than that reported for human immunodeficiency virus type 1 (HIV-1) IN. Modifications introduced at the Y-substrate junction demonstrated that the 3'-hydroxyl group at the terminus of the target strand was necessary for efficient joining of the target DNA strands. The presence of a 2'-hydroxyl group at the 3' end of the target strand, as well as a single-nucleotide gap at the LTR-target junction, reduced disintegration activity. The absence of hydroxyl groups on the terminal nucleotide abolished joining of the target strands. The results presented here suggest that M-MuLV IN disintegration activity is dependent on substantially different LTR sequence requirements than those reported for HIV-1 IN and may be mediated primarily through a structural recognition event.  相似文献   

7.
Retrovirus preintegration complexes (PIC) in virus-infected cells contain the linear viral DNA genome (approximately 10 kbp), viral proteins including integrase (IN), and cellular proteins. After transport of the PIC into the nucleus, IN catalyzes the concerted insertion of the two viral DNA ends into the host chromosome. This successful insertion process is termed "full-site integration." Reconstitution of nucleoprotein complexes using recombinant human immunodeficiency virus type 1 (HIV-1) IN and model viral DNA donor substrates (approximately 0.30 to 0.48 kbp in length) that are capable of catalyzing efficient full-site integration has proven difficult. Many of the products are half-site integration reactions where either IN inserts only one end of the viral donor substrate into a circular DNA target or into other donors. In this report, we have purified recombinant HIV-1 IN at pH 6.8 in the presence of MgSO4 that performed full-site integration nearly as efficiently as HIV-1 PIC. The size of the viral DNA substrate was significantly increased to 4.1 kbp, thus allowing for the number of viral DNA ends and the concentrations of IN in the reaction mixtures to be decreased by a factor of approximately 10. In a typical reaction at 37 degrees C, recombinant HIV-1 IN at 5 to 10 nM incorporated 30 to 40% of the input DNA donor into full-site integration products. The synthesis of full-site products continued up to approximately 2 h, comparable to incubation times used with HIV-1 PIC. Approximately 5% of the input donor was incorporated into the circular target producing half-site products with no significant quantities of other integration products produced. DNA sequence analysis of the viral DNA-target junctions derived from wild-type U3 and U5 coupled reactions showed an approximately 70% fidelity for the HIV-1 5-bp host site duplications. Recombinant HIV-1 IN successfully utilized a mutant U5 end containing additional nucleotide extensions for full-site integration demonstrating that IN worked properly under nonideal active substrate conditions. The fidelity of the 5-bp host site duplications was also high with these coupled mutant U5 and wild-type U3 donor ends. These studies suggest that recombinant HIV-1 IN is at least as capable as native IN in virus particles and approaching that observed with HIV-1 PIC for catalyzing full-site integration.  相似文献   

8.
Complementation of integrase function in HIV-1 virions.   总被引:6,自引:0,他引:6       下载免费PDF全文
Proviral integration is essential for HIV-1 replication and represents an important potential target for antiviral drug design. Although much is known about the integration process from studies of purified integrase (IN) protein and synthetic target DNA, provirus formation in virally infected cells remains incompletely understood since reconstituted in vitro assays do not fully reproduce in vivo integration events. We have developed a novel experimental system in which IN-mutant HIV-1 molecular clones are complemented in trans by Vpr-IN fusion proteins, thereby enabling the study of IN function in replicating viruses. Using this approach we found that (i) Vpr-linked IN is efficiently packaged into virions independent of the Gag-Pol polyprotein, (ii) fusion proteins containing a natural RT/IN processing site are cleaved by the viral protease and (iii) only the cleaved IN protein complements IN-defective HIV-1 efficiently. Vpr-mediated packaging restored IN function to a wide variety of IN-deficient HIV-1 strains including zinc finger, catalytic core and C-terminal domain mutants as well as viruses from which IN was completely deleted. Furthermore, trans complemented IN protein mediated a bona fide integration reaction, as demonstrated by the precise processing of proviral ends (5'-TG...CA-3') and the generation of an HIV-1-specific (5 bp) duplication of adjoining host sequences. Intragenic complementation between IN mutants defective in different protein domains was also observed, thereby providing the first evidence for IN multimerization in vivo.  相似文献   

9.
Using purified integration protein (IN) from human immunodeficiency virus (HIV) type 1 and oligonucleotide mimics of viral and target DNA, we have investigated the DNA sequence specificity of the cleaving and joining reactions that take place during retroviral integration. The first reaction in this process is selective endonucleolytic cleaving of the viral DNA terminus that generates a recessed 3' OH group. This 3' OH group is then joined to a 5' phosphoryl group located at a break in the target DNA. We found that the conserved CA located close to the 3' end of the plus strand of the U5 viral terminus (also present on the minus strand of the U3 terminus) was required for both cleaving and joining reactions. Six bases of HIV U5 or U3 DNA at the ends of model substrates were sufficient for nearly maximal levels of selective endonucleolytic cleaving and joining. However, viral sequence elements upstream of the terminal 6 bases could also affect the efficiencies of the cleaving and joining reactions. The penultimate base (C) on the minus strand of HIV U5 was required for optimal joining activity. A synthetic oligonucleotide mimic of the putative in vivo viral "DNA" substrate for HIV IN, a molecule that contained a terminal adenosine 5'-phosphate (rA) on the minus strand, was indistinguishable in the cleaving and joining reactions from the DNA substrate containing deoxyadenosine instead of adenosine 5'-phosphate at the terminal position. Single-stranded DNA served as an in vitro integration target for HIV IN. The DNA sequence specificity of the joining reaction catalyzed in the reverse direction was also investigated.  相似文献   

10.
11.
12.
13.
In vitro assay systems which use recombinant retroviral integrase (IN) and short DNA oligonucleotides fail to recapitulate the full-site integration reaction as it is known to occur in vivo. The relevance of using such circumscribed in vitro assays to define inhibitors of retroviral integration has not been formerly demonstrated. Therefore, we analyzed a series of structurally diverse inhibitors with respect to inhibition of both half-site and full-site strand transfer reactions with either recombinant or virion-produced IN. Half-site and full-site reactions catalyzed by avian myeloblastosis virus and human immunodeficiency virus type 1 (HIV-1) IN from virions are shown to be equivalently sensitive to inhibition by compounds which inhibit half-site reactions catalyzed by the recombinant HIV-1 IN. These studies therefore support the utility of using in vitro assays employing either recombinant or virion-derived IN to identify inhibitors of integration.  相似文献   

14.
Recombinant human immunodeficiency virus type 1 (HIV-1) integrase (IN) produced in Escherichia coli efficiently cleaves two nucleotides from the 3' end of synthetic oligonucleotide substrates which mimic the termini of HIV-1 proviral DNA. Efficient cleavage was restricted to HIV-1 substrates and did not occur with substrates derived from other retroviruses. Mutagenesis of the U5 long terminal repeat (LTR) terminus revealed only moderate effects of mutations outside the terminal four bases of the U5 LTR and highlighted the critical nature of the conserved CA dinucleotide motif shared by all retroviral termini. Integration of the endonuclease cleavage products occurs subsequent to cleavage, and evidence that the cleavage and integration reactions may be uncoupled is presented. Competition cleavage reactions demonstrated that IN-mediated processing of an LTR substrate could be inhibited by competition with LTR and non-LTR oligonucleotides.  相似文献   

15.
Experimental evidence suggests that a tetramer of integrase (IN) is the protagonist of the concerted strand transfer reaction, whereby both ends of retroviral DNA are inserted into a host cell chromosome. Herein we present two crystal structures containing the N-terminal and the catalytic core domains of maedi-visna virus IN in complex with the IN binding domain of the common lentiviral integration co-factor LEDGF. The structures reveal that the dimer-of-dimers architecture of the IN tetramer is stabilized by swapping N-terminal domains between the inner pair of monomers poised to execute catalytic function. Comparison of four independent IN tetramers in our crystal structures elucidate the basis for the closure of the highly flexible dimer-dimer interface, allowing us to model how a pair of active sites become situated for concerted integration. Using a range of complementary approaches, we demonstrate that the dimer-dimer interface is essential for HIV-1 IN tetramerization, concerted integration in vitro, and virus infectivity. Our structures moreover highlight adaptable changes at the interfaces of individual IN dimers that allow divergent lentiviruses to utilize a highly-conserved, common integration co-factor.  相似文献   

16.
The long terminal repeats (LTRs) that flank the retroviral DNA genome play a distinct role in the integration process by acting as specific substrates for the integrase (IN). The role of LTR sequences in providing substrate recognition and specificity to integration reactions was investigated for INs from human immunodeficiency virus type 1 (HIV-1), Moloney murine leukemia virus (M-MuLV), human T-cell leukemia virus type 1 (HTLV-1), and human T-cell leukemia virus type 2 (HTLV-2). Overall, these INs required specific LTR sequences for optimal catalysis of 3'-processing reactions, as opposed to strand transfer and disintegration reactions. It is of particular note that in strand transfer reactions the sites of integration were similar among the four INs. In the 3'-processing reaction, sequence specificity for each IN was traced to the three nucleotides proximal to the conserved CA. Reactions catalyzed by M-MuLV IN were additionally influenced by upstream regions. The nucleotide requirements for optimal catalysis differed for each IN. HIV-1 IN showed a broad range of substrate specificities, while HTLV-1 IN and HTLV-2 IN had more defined sequence requirements. M-MuLV IN exhibited greater activity with the heterologous LTR substrates than with its own wild-type substrate. This finding was further substantiated by the high levels of activity catalyzed by the IN on modified M-MuLV LTRs. This work suggests that unlike the other INs examined, M-MuLV IN has evolved with an IN-LTR interaction that is suboptimal.  相似文献   

17.
18.
19.
HIV-1 integrase (IN) catalyses integration of a DNA copy of the viral genome into the host genome. Specific interactions between retroviral IN and long terminal repeats (LTR) are required for this insertion. To characterize quantitatively the influence of the determinants of DNA substrate specificity on the oligomerization status of IN, we used the small-angle X-ray scattering (SAXS) technique. Under certain conditions in the absence of ODNs IN existed only as monomers. IN preincubation with specific ODNs led mainly to formation of dimers, the relative amount of which correlated well with the increase in the enzyme activity in the 3′-processing reaction. Under these conditions, tetramers were scarce. Non-specific ODNs stimulated formation of catalytically inactive dimers and tetramers. Complexes of monomeric, dimeric and tetrameric forms of IN with specific and non-specific ODNs had varying radii of gyration (Rg), suggesting that the specific sequence-dependent formation of IN tetramers can probably occur by dimerization of two dimers of different structure. From our data we can conclude that the DNA-induced oligomerization of HIV-1 IN is probably of importance to provide substrate specificity and to increase the enzyme activity.  相似文献   

20.
Retroviral integrase (IN) catalyzes the integration of double-stranded viral DNA into the host cell genome. The reaction can be divided in two steps: 3'-end processing and DNA strand transfer. Here we studied the effect of short oligonucleotides (ODNs) on human immunodeficiency virus type 1 (HIV-1) IN. ODNs were either specific, with sequences representing the extreme termini of the viral long terminal repeats, or nonspecific. All ODNs were found to competitively inhibit the processing reaction with Ki values in the nM range for the best inhibitors. Our studies on the interaction of IN with ODNs also showed that: (i) besides the 3'-terminal GT, the interaction of IN with the remaining nucleotides of the 21-mer specific sequence was also important for an effective interaction of the enzyme with the substrate; (ii) in the presence of specific ODNs the activity of the enzyme was enhanced, a result which suggests an ODN-induced conformational change of HIV-1 IN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号