首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A high-performance liquid chromatographic method for the determination of nitrite and nitrate anions derived from nitric oxide in biological fluids is presented. After separation on a strong anion-exchange column (Spherisorb SAX, 250×4.6 mm I.D., 5 μm), two on-line post-column reactions occur. The first involves nitrate reduction to nitrite on a copper-plated cadmium-filled column. In the second, the diazotization-coupling reaction between nitrite and the Griess reagent (0.05% naphtylethylendiamine dihydrochloride plus 0.5% sulphanilamide in 5% phosphoric acid) takes place, and the absorbance of the chromophore is read at 540 nm. This methodology was applied to biological fluids. Before injection into the chromatographic system, the samples were diluted and submitted to suitable clean-up procedures (urine and cell culture supernatant samples are passed through C18 cartridges, and serum samples were deproteinized by ultrafiltration through membranes with a molecular mass cut-off of 3000). The method has a sensitivity of 30 pmol for both anions, as little as 0.05–0.1 ml sample volume is required and linearity is observed up to 60 nmol for each anion.  相似文献   

2.
Metabolic syndrome (MetS) denotes a clustering of risk factors that may affect nitric oxide (NO) bioavailability and predispose to cardiovascular diseases, which are delayed by exercise training. However, no previous study has examined how MetS affects markers of NO formation, and whether exercise training increases NO formation in MetS patients. Here, we tested these two hypotheses. We studied 48 sedentary individuals: 20 healthy controls and 28 MetS patients. Eighteen MetS patients were subjected to a 3-month exercise training (E + group), while the remaining 10 MetS patients remained sedentary (E−group). The plasma concentrations of nitrite, cGMP, and ADMA (asymmetrical dimethylarginine; an endogenous nitric oxide synthase inhibitor), and the whole blood nitrite concentrations were determined at baseline and after exercise training using an ozone-based chemiluminescence assay, and commercial enzyme immunoassays. Thiobarbituric acid reactive species (TBA-RS) were measured in the plasma to assess oxidative stress using a fluorometric method. We found that, compared with healthy subjects, patients with MetS have lower concentrations of markers of NO formation, including whole blood nitrite, plasma nitrite, and plasma cGMP, and increased oxidative stress (all P < 0.05). Exercise training increased the concentrations of whole blood nitrite and cGMP, and decreased both oxidative stress and the circulating concentrations of ADMA (both P < 0.05). These findings show clinical evidence for lower endogenous NO formation in patients with MetS, and for improvements in NO formation associated with exercise training in MetS patients.  相似文献   

3.
The physiological role of myoglobin (Mb) within the heart depends on its oxygenation state. The myocardium exhibits a broad oxygen partial pressure (pO2) spectrum with a transmural gradient from the epicardial to the subendocardial layer, ranging from arterial values to an average of 19.3 mm Hg down to 0 mm Hg. The function of Mb as an O2 storage depot is well appreciated, especially during systolic compression. In addition, Mb controls myocardial nitric oxide (NO) homeostasis and thus modulates mitochondrial respiration under physiological and pathological conditions. We recently discovered the role of Mb as a myocardial O2 sensor; in its oxygenated state Mb scavenges NO, protecting the heart from the deleterious effects of excessive NO. Under hypoxia, however, deoxygenated Mb changes its role from an NO scavenger to an NO producer. The NO produced protects the cell from short phases of hypoxia and from myocardial ischemia/reperfusion injury. In this review we summarize the traditional and novel aspects of Mb and its (patho)physiological role in the heart.  相似文献   

4.
May JM  Qu ZC  Li X 《Free radical research》2004,38(6):581-589
Nitrite is a breakdown product of nitric oxide that in turn is oxidized to nitrate in cells. In this work, we investigated whether reactive oxidant species might be generated during nitrite metabolism in cultured EA.hy926 endothelial cells. Nitrite was taken up by the cells in a time- and concentration-dependent manner and oxidized to nitrate, which accumulated in cells to concentrations almost 10-fold those of nitrite. Conversion of low millimolar concentrations of nitrite to nitrate was associated with increased oxidant stress in the cells. This manifested as increased oxidation of dihydrofluorescein in tandem with depletion of both GSH and ascorbate. Further, loading cells with ascorbate or treatment with desferrioxamine prevented nitrite-induced dihydrofluorescein oxidation. Nitrite within cells also increased the fluorescence of 4-amino-5-methylamino-2',7'-difluorofluorescein and inhibited the activity of cellular glyceraldehyde 3-phosphate dehydrogenase, which are markers of intracellular nitrosation reactions. Intracellular ascorbate partially prevented both of these effects of nitrite. Although ascorbate can reduce nitrite to nitric oxide at low pH, in endothelial cells loaded with ascorbate, its predominant effect at high nitrite concentrations is to prevent potentially damaging nitrosation reactions.  相似文献   

5.
Nitrite is a breakdown product of nitric oxide that in turn is oxidized to nitrate in cells. In this work, we investigated whether reactive oxidant species might be generated during nitrite metabolism in cultured EA.hy926 endothelial cells. Nitrite was taken up by the cells in a time- and concentration-dependent manner and oxidized to nitrate, which accumulated in cells to concentrations almost 10-fold those of nitrite. Conversion of low millimolar concentrations of nitrite to nitrate was associated with increased oxidant stress in the cells. This manifested as increased oxidation of dihydrofluorescein in tandem with depletion of both GSH and ascorbate. Further, loading cells with ascorbate or treatment with desferrioxamine prevented nitrite-induced dihydrofluorescein oxidation. Nitrite within cells also increased the fluorescence of 4-amino-5-methylamino-2′,7′-difluorofluorescein and inhibited the activity of cellular glyceraldehyde 3-phosphate dehydrogenase, which are markers of intracellular nitrosation reactions. Intracellular ascorbate partially prevented both of these effects of nitrite. Although ascorbate can reduce nitrite to nitric oxide at low pH, in endothelial cells loaded with ascorbate, its predominant effect at high nitrite concentrations is to prevent potentially damaging nitrosation reactions.  相似文献   

6.
Adaptation of the Griess reaction for detection of nitrite in human plasma   总被引:1,自引:0,他引:1  
The determination of nitrite in human plasma or serum has been most frequently used as a marker of nitric oxide (NO) production. In addition, it has recently been suggested that nitrite could act as a vasodilating agent at physiological concentrations by NO delivery. Therefore, nitrite determination in biological fluids is becoming increasingly important. The most frequently used method to measure nitrite is based on the spectrophotometric analysis of the azo dye obtained after reaction with the Griess reagent. This method has some limitations regarding detection limit and sensitivity, thus resulting unsuitable for nitrite detection in plasma. We have identified some drawbacks and modified the original procedure to overcome these problems. By the use of the newly developed method, we measured 221±72 nM nitrite in human plasma from healthy donors.  相似文献   

7.
After taking alcoholic beverages, the ethanol is mixed with saliva and then gastric juice. As pH of gastric juice is around 2, the ethanol might be transformed to ethyl nitrite in the stomach by reacting with salivary nitrite. In this study, reactions between ethanol and nitrite in acidified saliva were investigated. The result indicates that nitrite in acidified saliva reacted with ethanol producing ethyl nitrite. It is discussed that ethyl nitrite might be formed in the stomach after drinking alcoholic beverages and that the ethyl nitrite might function as a donor of NO in intestinal and gastric tissues.  相似文献   

8.
Gastrin and ghrelin are secreted from G cells and X/A-like cells in the stomach, respectively, and respective hormones stimulate gastric acid secretion by acting through histamine and the vagus nerve. In this study, we examined the relationship between gastrin, ghrelin and gastric acid secretion in rats. Intravenous (iv) administration of 3 and 10 nmol of gastrin induced transient increases of ghrelin levels within 10 min in a dose-dependent manner. Double immunostaining for ghrelin and gastrin receptor revealed that a proportion of ghrelin cells possess gastrin receptors. Although (iv) administration of gastrin or ghrelin induced significant gastric acid secretion, simultaneous treatment with both hormones resulted in a synergistic, rather than additive, increase of gastric acid secretion. This synergistic increase was not observed in vagotomized rats.These results suggest that gastrin may directly stimulate ghrelin release from the stomach, and that both hormones may increase gastric acid secretion synergistically.  相似文献   

9.
10.
Ghrelin, identified in the gastric mucosa has been involved in control of food intake and growth hormone (GH) release but little is known about its influence on gastric secretion and mucosal integrity. The effects of ghrelin on gastric secretion, plasma gastrin and gastric lesions induced in rats by 75% ethanol or 3.5 h of water immersion and restraint stress (WRS) were determined. Exogenous ghrelin (5, 10, 20, 40 and 80 microg/kg i.p.) increased gastric acid secretion and attenuated gastric lesions induced by ethanol and WRS and this was accompanied by the significant rise in plasma ghrelin level, gastric mucosal blood flow (GBF) and luminal NO concentrations. Ghrelin-induced protection was abolished by vagotomy and attenuated by suppression of COX, deactivation of afferent nerves with neurotoxic dose of capsaicin or CGRP(8-37) and by inhibition of NOS with L-NNA but not influenced by medullectomy and administration of 6-hydroxydopamine. We conclude that ghrelin exerts a potent protective action on the stomach of rats exposed to ethanol and WRS, and these effects depend upon vagal activity, sensory nerves and hyperemia mediated by NOS-NO and COX-PG systems.  相似文献   

11.
In our study, we tried to find whether changes in expressions of inducible nitric oxide synthase (iNOS), corticosteroid (gluco-and mineralocorticoid) receptors (GRs and MRs, respectively), and bcl2 protein within the early stages of streptozotocin (STZ)-induced diabetes in Wistar rats can be involved in hippocampal dysfunction. Expressions of iNOS and bcl2 were studied using indirect immunofluorescence techniques, while GR and MR expressions were estimated using in situ mRNA hybridization. The concentrations of insulin, ACTH, and corticosterone in the blood serum were measured using ELISA kits. It was found that expression of iNOS in the CA2 and CA3 hippocampal areas increased significantly at day 3 after STZ injection, and corticosterone and ACTH levels in the serum increased at day 14. The iNOS expression was downregulated at day 14 of the development of diabetes. These changes were accompanied by significantly increased expression of GRs in the hippocampus. Neither bcl2 nor MR expression increased in the CA2 and CA3 hippocampal areas within the examined period of the development of diabetes. Thus, we first obtained proof of noticeable early molecular events in the rat hippocampus related to experimental diabetes. These events may be linked with diabetes-associated cognitive decline observed in patients suffering from diabetes. Neirofiziologiya/Neurophysiology, Vol. 39, No. 6, pp. 498–502, November–December, 2007.  相似文献   

12.
We have recently demonstrated that NO-mediated polymorphonuclear (PMN)-dependent inhibition of rat platelet aggregation is significantly enhanced in the presence of ascorbate. Consequently, the present study was undertaken to elucidate the underlying mechanisms involved in ascorbate-mediated potentiation of NO synthesis in PMNs. We observed that ascorbate or its oxidized product, dehydroascorbate (DHA), enhanced NOS activity, as measured by nitrite content, diaminofluorescein fluorescence or conversion of L-[3H]arginine to L-[3H]citrulline in rat, monkey, and human PMNs. The increase in NO generation following ascorbate treatment was due to the intracellular ascorbate as iodoacetamide-mediated inhibition of DHA to ascorbate conversion attenuated the DHA-mediated increase in NO synthesis. The augmentation of NOS activity in the PMN homogenate by tetrahydrobiopterin was significantly enhanced by ascorbate, while ascorbate alone did not influence the NOS activity. Ascorbate-mediated enhancement of NOS activity in the cultured PMNs was significantly reduced in the presence of biopterin synthesis inhibitors. Ascorbate, thus, seems to regulate the NOS activity in the PMNs through tetrahydrobiopterin.  相似文献   

13.
The aim of this study is to determine the relation between diabetes and vaginal candidiasis in terms of oxidative biomarker levels in a vaginal candidiasis model of the diabetic rats by evaluating malondialdehyde (MDA), sulphydrile groups or glutathione (RSH), and ascorbic acid (C vit) levels. All rats were randomly divided into five groups. All of the groups were observed for 21 days. In the treated diabetes groups, MDA (0.90, 0.68 nmol/ml and 3.78, 3.79 nmol/g tissue, plasma and vaginal tissue, respectively) and RSH (227, 171 nmol/100 ml 0.38, 0.37 μmol/g tissue, plasma and vaginal tissue, respectively) levels were found to be decreased while the levels of C vit were found to be increased (0.49, 0.37 μmol/l 2.39, 2.01 nmol/g tissue plasma, and vaginal tissue, respectively) (P < 0.05). In the groups of untreated diabetes, vaginal candidiasis were found to be more serious and oxidative biomarkers were found to be increased (MDA 1.30, 1.26 nmol/ml and 7.82, 2.37 nmol/g tissue and RSH 258, 145 nmol/100 ml and 0.31, 0.46 μmol/g tissue) while the antioxidant C vit levels were found to be decreased (0.24, 0.17 μmol/l 1.33, 2.66 nmol/g tissue) (P < 0.05). RSH, plasma MDA, blood glucose, and tissue MDA levels of vaginal candidiasis embedeled diabetic rats, were found to be higher than those in untreated diabetic and untreated vaginitis enbedeled rats ‹P < 0.05’. Vaginal candidiasis caused oxidative stress in diabetic rats working together. Systemic oxidative stress biomarkers were found to be affected from vaginal candidiasis although it was a local mucosal infection. This study was presented as a poster in the conference of ‹2nd Trends in Medical Mycology, 23–26 October 2005, Berlin, Germany’.  相似文献   

14.
We previously reported the stimulatory effect of endogenous nitric oxide (NO) on gastric acid secretion in the isolated mouse whole stomach and histamine release from gastric histamine-containing cells. In the present study, we investigated the effects of endogenous and exogenous NO on gastric acid secretion in urethane-anesthetized rats. Acid secretion was studied in gastric-cannulated rats stimulated with several secretagogues under urethane anesthesia. The acid secretory response to the muscarinic receptor agonist bethanechol (2 mg/kg, s.c.), the cholecystokinin(2) receptor agonist pentagastrin (20 microg/kg, s.c.) or the centrally acting secretagogue 2-deoxy-D-glucose (200 mg/kg, i.v.) was dose-dependently inhibited by the NO synthase inhibitor N(omega)-nitro-L-arginine (L-NNA, 10 or 50 mg/kg, i.v.). This inhibitory effect of L-NNA was reversed by a substrate of NO synthase, L-arginine (200 mg/kg, i.v.), but not by D-arginine. The histamine H(2) receptor antagonist famotidine (1 mg/kg, i.v.) completely inhibited the acid secretory response to bethanechol, pentagastrin or 2-deoxy-D-glucose, showing that all of these secretagogues induced gastric acid secretion mainly through histamine release from gastric enterochromaffin-like cells (ECL cells). On the other hand, histamine (10 mg/kg, s.c.)-induced gastric acid secretion was not inhibited by pretreatment with L-NNA. The NO donor sodium nitroprusside (0.3-3 mg/kg, i.v.) also dose-dependently induced an increase in acid secretion. The sodium nitroprusside-induced gastric acid secretion was significantly inhibited by famotidine or by the soluble guanylate cyclase inhibitor methylene blue (50 mg/kg, i.v.). These results suggest that NO is involved in the gastric acid secretion mediated by histamine release from gastric ECL cells.  相似文献   

15.
It has been proposed that the reduction of nitrite by red cells producing NO plays a role in the regulation of vascular tone. This hypothesis was investigated in rats by measuring the effect of nitrite infusion on mean arterial blood pressure (MAP), cerebral blood flow (CBF) and cerebrovascular resistance (CVR) in conjunction with the accumulation of red cell NO. The relative magnitude of the effects on MAP and CBF as well as the time dependent changes during nitrite infusion are used to distinguish between the effects on the peripheral circulation and the effects on the cerebral circulation undergoing cerebral autoregulation. The nitrite infusion was found to reverse the 96% increase in MAP and the 13% decrease in CBF produced by L-NAME inhibition of e-NOS. At the same time there was a 20-fold increase in oxygen stable red cell NO. Correlations of the red cell NO for individual rats support a role for red cell nitrite reduction in regulating vascular tone in both the peripheral and the cerebral circulation. Furthermore, data obtained prior to treatment is consistent with a contribution of red cell reduced nitrite in regulating vascular tone even under normal conditions.  相似文献   

16.
Recent studies surprisingly show that dietary inorganic nitrate, abundant in vegetables, can be metabolized in vivo to form nitrite and then bioactive nitric oxide. A reduction in blood pressure was recently noted in healthy volunteers after dietary supplementation with nitrate; an effect consistent with formation of vasodilatory nitric oxide. Oral bacteria have been suggested to play a role in bioactivation of nitrate by first reducing it to the more reactive anion nitrite. In a cross-over designed study in seven healthy volunteers we examined the effects of a commercially available chlorhexidine-containing antibacterial mouthwash on salivary and plasma levels of nitrite measured after an oral intake of sodium nitrate (10 mg/kg dissolved in water). In the control situation the salivary and plasma levels of nitrate and nitrite increased greatly after the nitrate load. Rinsing the mouth with the antibacterial mouthwash prior to the nitrate load had no effect on nitrate accumulation in saliva or plasma but abolished its conversion to nitrite in saliva and markedly attenuated the rise in plasma nitrite. We conclude that the acute increase in plasma nitrite seen after a nitrate load is critically dependent on nitrate reduction in the oral cavity by commensal bacteria. The removal of these bacteria with an antibacterial mouthwash will very likely attenuate the NO-dependent biological effects of dietary nitrate.  相似文献   

17.
Recent studies have revealed that ghrelin may be an antioxidant and anti-inflammatory agent in many organs, however its role in chronic liver injury (CLI) remains unclear. The role of nitric oxide (NO) in CLI is controversial as evidence suggests that NO is either a primary mediator of liver cell injury or exhibits a protective effect against injurious stimuli. Recent evidence demonstrated that the therapeutic potential for ghrelin was through eNOS activation and increase in NO production. However, its role on NO production in the liver has not been previously investigated. The aim of this study was to investigate the role of ghrelin in treatment of CLI, and whether this action is mediated through NO. Forty male rats were divided into four groups: Group I: Control; Group II: chronic liver injury (CLI); Group III: CLI + Ghrelin; and Group IV: CLI + Ghrelin + l-NAME. Liver enzymes and tumor necrosis factor alpha (TNF-α), were measured to assess hepatocellular injury. Liver tissue collagen content, malondialdehyde (MDA), gene expression of Bax, Bcl-2, and eNOS were assessed to determine the mechanism of ghrelin action. Results showed that ghrelin decreased serum liver enzymes and TNF-α levels. Ghrelin also reduced liver tissue collagen, MDA, and Bax gene expression, and increased Bcl-2 and eNOS gene expression. The effects on TNF-α, collagen, MDA, Bax, and eNOS were partially reversed in Group IV, suggesting that ghrelin's action could be through modulation of NO levels. Therefore, ghrelin's hepatoprotective effect is partially mediated by NO release.  相似文献   

18.
Catalytic consumption of nitric oxide (NO) by myeloperoxidase and related peroxidases is implicated as playing a key role in impairing NO bioavailability during inflammatory conditions. However, there are major gaps in our understanding of how peroxidases consume NO in physiological fluids, in which multiple reactive enzyme substrates and antioxidants are present. Notably, ascorbate has been proposed to enhance myeloperoxidase-catalyzed NO consumption by forming NO-consuming substrate radicals. However, we show that in complex biological fluids ascorbate instead plays a critical role in inhibiting NO consumption by myeloperoxidase and related peroxidases (lactoperoxidase, horseradish peroxidase) by acting as a competitive substrate for protein-bound redox intermediates and by efficiently scavenging peroxidase-derived radicals (e.g., urate radicals), yielding ascorbyl radicals that fail to consume NO. These data identify a novel mechanistic basis for how ascorbate preserves NO bioavailability during inflammation. We show that NO consumption by myeloperoxidase Compound I is significant in substrate-rich fluids and is resistant to competitive inhibition by ascorbate. However, thiocyanate effectively inhibits this process and yields hypothiocyanite at the expense of NO consumption. Hypothiocyanite can in turn form NO-consuming radicals, but thiols (albumin, glutathione) readily prevent this. Conversely, where ascorbate is absent, glutathione enhances NO consumption by urate radicals via pathways that yield S-nitrosoglutathione. Theoretical kinetic analyses provide detailed insights into the mechanisms by which ascorbate and thiocyanate exert their protective actions. We conclude that the local depletion of ascorbate and thiocyanate in inflammatory microenvironments (e.g., due to increased metabolism or dysregulated transport) will impair NO bioavailability by exacerbating peroxidase-catalyzed NO consumption.  相似文献   

19.
Chronic inflammation is currently recognized as a critical process in modern-era epidemics such as diabetes, obesity and neurodegeneration. However, little attention is paid to the constitutive inflammatory pathways that operate in the gut and that are mandatory for local welfare and the prevention of such multi-organic diseases. Hence, the digestive system, while posing as a barrier between the external environment and the host, is crucial for the balance between constitutive and pathological inflammatory events. Gut microbiome, a recently discovered organ, is now known to govern the interaction between exogenous agents and the host with ensued impact on local and systemic homeostasis. Whereas gut microbiota may be modulated by a myriad of factors, diet constitutes one of its major determinants. Thus, dietary compounds that influence microbial flora may thereby impact on inflammatory pathways. One such example is the redox environment in the gut lumen which is highly dependent on the local generation of nitric oxide along the nitrate-nitrite-nitric oxide pathway and that is further enhanced by simultaneous consumption of polyphenols. In this paper, different pathways encompassing the interaction of dietary nitrate and polyphenols with gut microbiota will be presented and discussed in connection with local and systemic inflammatory events. Furthermore, it will be discussed how these interactive cycles (nitrate-polyphenols-microbiome) may pose as novel strategies to tackle inflammatory diseases.  相似文献   

20.
Cerebrospinal Fluid Nitrite/Nitrate Levels in Neurologic Diseases   总被引:5,自引:0,他引:5  
Abstract: Nitric oxide has been proposed to mediate cytotoxic effects in inflammatory diseases. To investigate the possibility that overproduction of nitric oxide might play a role in the neuropathology of inflammatory and noninflammatory neurological diseases, we compared levels of the markers of nitric oxide, nitrite plus nitrate, in the CSF of controls with those in patients with various neurologic diseases, including Huntington's and Alzheimer's disease, amyotrophic lateral sclerosis, and HIV infection. We found that there were no significant increases in the CSF levels of these nitric oxide metabolites, even in patients infected with HIV or in monkeys infected with poliovirus, both of which have significantly elevated levels of the neurotoxin quinolinic acid and the marker of macrophage activation, neopterin. However, CSF quinolinic acid, neopterin, and nitrite/nitrate levels were significantly increased in a small group of patients with bacterial and viral meningitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号